Abstract How convective boundary‐layer (CBL) processes modify fluxes of sensible (SH) and latent (LH) heat and CO2(Fc) in the atmospheric surface layer (ASL) remains a recalcitrant problem. Here, large eddy simulations for the CBL show that whileSHin the ASL decreases linearly with height regardless of soil moisture conditions,LHandFcdecrease linearly with height over wet soils but increase with height over dry soils. This varying flux divergence/convergence is regulated by changes in asymmetric flux transport between top‐down and bottom‐up processes. Such flux divergence and convergence indicate that turbulent fluxes measured in the ASL underestimate and overestimate the “true” surface interfacial fluxes, respectively. While the non‐closure of the surface energy balance persists across all soil moisture states, it improves over drier soils due to overestimatedLH. The non‐closure does not imply thatFcis always underestimated;Fccan be overestimated over dry soils despite the non‐closure issue.
more »
« less
Relaxed Eddy Accumulation Outperforms Monin‐Obukhov Flux Models Under Non‐Ideal Conditions
Abstract The Monin‐Obukhov Similarity Theory (MOST) links turbulent statistics to surface fluxes through universal functions. Here, we investigate its performance over a large lake, where none of its assumptions (flat homogeneous surface) are obviously violated. We probe the connection between the variance budget terms and departure from the nondimensional flux‐variance function for CO2, water vapor, and temperature. Our results indicate that both the variance storage and its vertical transport affect MOST, and these terms are most significant when small fluxes and near neutral conditions were prevalent. Such conditions are common over lakes and oceans, especially for CO2, underlining the limitation of using any MOST‐based methods to compute small fluxes. We further show that the relaxed eddy accumulation (REA) method is more robust and less sensitive to storage and transport, adequately reproducing the eddy‐covariance fluxes even for the smallest flux magnitudes. Therefore, we recommend REA over MOST methods for trace‐gas flux estimation.
more »
« less
- Award ID(s):
- 2128345
- PAR ID:
- 10409501
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 7
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Coastal vegetated habitats like seagrass meadows can mitigate anthropogenic carbon emissions by sequestering CO2as “blue carbon” (BC). Already, some coastal ecosystems are actively managed to enhance BC storage, with associated BC stocks included in national greenhouse gas inventories. However, the extent to which BC burial fluxes are enhanced or counteracted by other carbon fluxes, especially air‐water CO2flux (FCO2) remains poorly understood. In this study, we synthesized all available direct FCO2measurements over seagrass meadows made using atmospheric Eddy Covariance, across a globally representative range of ecotypes. Of the four sites with seasonal data coverage, two were net CO2sources, with average FCO2equivalent to 44%–115% of the global average BC burial rate. At the remaining sites, net CO2uptake was 101%–888% of average BC burial. A wavelet coherence analysis demonstrated that FCO2was most strongly related to physical factors like temperature, wind, and tides. In particular, tidal forcing was a key driver of global‐scale patterns in FCO2, likely due to a combination of lateral carbon exchange, bottom‐driven turbulence, and pore‐water pumping. Lastly, sea‐surface drag coefficients were always greater than the prediction for the open ocean, supporting a universal enhancement of gas‐transfer in shallow coastal waters. Our study points to the need for a more comprehensive approach to BC assessments, considering not only organic carbon storage, but also air‐water CO2exchange, and its complex biogeochemical and physical drivers.more » « less
-
Abstract Small freshwater reservoirs are ubiquitous and likely play an important role in global greenhouse gas (GHG) budgets relative to their limited water surface area. However, constraining annual GHG fluxes in small freshwater reservoirs is challenging given their footprint area and spatially and temporally variable emissions. To quantify the GHG budget of a small (0.1 km2) reservoir, we deployed an Eddy covariance (EC) system in a small reservoir located in southwestern Virginia, USA over 2 years to measure carbon dioxide (CO2) and methane (CH4) fluxes near‐continuously. Fluxes were coupled with in situ sensors measuring multiple environmental parameters. Over both years, we found the reservoir to be a large source of CO2(633–731 g CO2‐C m−2 yr−1) and CH4(1.02–1.29 g CH4‐C m−2 yr−1) to the atmosphere, with substantial sub‐daily, daily, weekly, and seasonal timescales of variability. For example, fluxes were substantially greater during the summer thermally stratified season as compared to the winter. In addition, we observed significantly greater GHG fluxes during winter intermittent ice‐on conditions as compared to continuous ice‐on conditions, suggesting GHG emissions from lakes and reservoirs may increase with predicted decreases in winter ice‐cover. Finally, we identified several key environmental variables that may be driving reservoir GHG fluxes at multiple timescales, including, surface water temperature and thermocline depth followed by fluorescent dissolved organic matter. Overall, our novel year‐round EC data from a small reservoir indicate that these freshwater ecosystems likely contribute a substantial amount of CO2and CH4to global GHG budgets, relative to their surface area.more » « less
-
Abstract Emission of CO2from tropical peatlands is an important component of the global carbon budget. Over days to months, these fluxes are largely controlled by water table depth. However, the diurnal cycle is less well understood, in part, because most measurements have been collected daily at midday. We used an automated chamber system to make hourly measurements of peat surface CO2emissions from chambers root‐cut to 30 cm. We then used these data to disentangle the relationship between temperature, water table and heterotrophic respiration (Rhet). We made two central observations. First, we found strong diurnal cycles in CO2flux and near‐surface peat temperature (<10 cm depth), both peaking at midday. The magnitude of diurnal oscillations was strongly influenced by shading and water table depth, highlighting the limitations of relying on daytime measurements and/or a single correction factor to remove daytime bias in flux measurements. Second, we found mean daily Rhethad a strong linear relationship to the depth of the water table, and under flooded conditions, Rhetwas small and constant. We used this relationship between Rhetand water table depth to estimate carbon export from both Rhetand dissolved organic carbon over the course of a year based on water table records. Rhetdominates annual carbon export, demonstrating the potential for peatland drainage to increase regional CO2emissions. Finally, we discuss an apparent incompatibility between hourly and daily average observations of CO2flux, water table and temperature: water table and daily average flux data suggest that CO2is produced across the entire unsaturated peat profile, whereas temperature and hourly flux data appear to suggest that CO2fluxes are controlled by very near surface peat. We explore how temperature‐, moisture‐ and gas transport‐related mechanisms could cause mean CO2emissions to increase linearly with water table depth and also have a large diurnal cycle.more » « less
-
Abstract The relaxed eddy accumulation (REA) method is a widely‐known technique that measures turbulent fluxes of scalar quantities. The REA technique has been used to measure turbulent fluxes of various compounds, such as methane, ethene, propene, butene, isoprene, nitrous oxides, ozone, and others. The REA method requires the accumulation of scalar concentrations in two separate compartments that conditionally sample updrafts and downdraft events. It is demonstrated here that the assumptions behind the conventional or two‐compartment REA approach allow for one‐compartment sampling, therefore called a one compartment or 1‐C‐REA approach, thereby expanding its operational utility. The one‐compartment sampling method is tested across various land cover types and atmospheric stability conditions, and it is found that the one‐compartment REA can provide results comparable to those determined from conventional two‐compartment REA. This finding enables rapid expansion and practical utility of REA in studies of surface‐atmosphere exchanges, interactions, and feedbacks.more » « less