skip to main content

Title: Oxygen depletion and sediment respiration in ice‐covered arctic lakes

Processes regulating the rate of oxygen depletion determine whether hypoxia occurs and the extent to which greenhouse gases accumulate in seasonally ice‐covered lakes. Here, we investigate the oxygen budget of four arctic lakes using high‐frequency data during two winters in three shallow lakes (9–13 m maximal depth) and four winters in 24 m deep main basin of Toolik Lake. Incubation experiments measured sediment metabolism. Volume‐averaged oxygen depletion measured in situ was independent of water temperature and duration of the ice‐covered period. Average rates were between 0.2 and 0.39 g O2 m−2 d−1in the shallow lakes and between 0.03 and 0.14 g O2 m−2 d−1in Toolik Lake, with higher rates in smaller lakes with their larger sediment area to volume ratio. Rates decreased to ~ 20%–50% of initial values in late winter in the shallow lakes but less or not at all in Toolik. The lack of a decline in Toolik Lake points to continued oxygen transport to the sediment–water interface where oxygen consumption occurs. In all lakes, lower in situ oxygen depletion than in incubation measurements points toward increasing anoxia in the lower water column depressing loss rates. In Toolik, oxygen loss during early winter was less in years with minimal snow cover. Penetrative convection occurred, which could mix downwards oxygen produced by photosynthesis or excluded during ice formation. Estimates of these terms exceeded photosynthesis measured in sediment incubations. Modeling under ice‐oxygen dynamics requires consideration of optical properties and biological and transport processes that modify oxygen concentrations and distributions.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Page Range / eLocation ID:
p. 1470-1489
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Warming winters will reduce ice cover and change under‐ice conditions in temperate mountain lakes, where snow contributes most of winter cover on lakes. Snow‐dominated mountain lakes are abundant and highly susceptible to climate warming, yet we lack an understanding of how climate variation and local attributes influence winter processes. We investigated climatic and intrinsic controls on ice phenology, water temperature, and bottom‐water dissolved oxygen (DO) in 15 morphologically diverse lakes in the Sierra Nevada and Klamath Mountains of California, USA, using high‐frequency measurements from multiple (2–5) winters. We found that ice phenology was determined by winter climate variables (snowfall and air temperature) that influence ice‐off timing, whereas ice‐on timing was relatively invariant among years. Lake size and morphology mediated the effect of climate on lake temperature and DO dynamics in early and late winter. Rates of hypolimnetic DO decline were highest in small, shallow lakes, and were unrelated to water temperature. Temperature and oxygen dynamics were more variable in small lakes because heavy snowfall caused ice submergence, mixing, and DO replenishment that affected the entire water column. As the persistence of snow declines in temperate mountain regions, autumn, and spring climatic conditions are expected to gain importance in regulating lake ice phenology. Water temperature and DO will likely increase in most lakes during winter as snowpack declines, but morphological attributes such as lake size will determine the sensitivity of ice phenology and under‐ice processes to climate change.

    more » « less
  2. Lake El'gygytgyn, located in central Chukotka, Russian Arctic, was the subject of an international drilling project that resulted in the recovery of the longest continuous palaeoclimatic and palaeoenvironmental record for the terrestrial Arctic covering the last 3.6 million years. Here, we present the reconstruction of the lake‐level fluctuations of Lake El'gygytgyn since Marine Isotope Stage (MIS) 7 based on lithological and palynological as well as chronological studies of shallow‐water sediment cores and subaerial lake terraces. Reconstructed lake levels show an abrupt rise during glacial–interglacial terminations (MIS6/5 andMIS2/1) and during theMIS4/3 stadial–interstadial transition. The most prominent lowstands occurred during glacial periods associated with a permanent lake‐ice cover (namelyMIS6,MIS4 andMIS2). Major triggering mechanisms of the lake‐level fluctuations at Lake El'gygytgyn are predominantly changes in air temperature and precipitation. Regional summer temperatures control the volume of meltwater supply as well as the duration of the lake‐ice cover (permanent or seasonal). The duration of the lake‐ice cover, in turn, enables or hampers near‐shore sediment transport, thus leading to long‐term lake‐level oscillations on glacial–interglacial time scales by blocking or opening the lake outflow, respectively. During periods of seasonal ice cover the lake level was additionally influenced by changes in precipitation. The discovered mechanism of climatologically driven level fluctuations of Lake El'gygytgyn are probably valid for large hydrologically open lakes in the Arctic in general, thus helping to understand arctic palaeohydrology and providing missing information for climate modelling.

    more » « less
  3. Abstract

    Seasonally ice‐covered permafrost lakes in the Arctic emit methane to the atmosphere during periods of open‐water. However, processes contributing to methane cycling under‐ice have not been thoroughly addressed despite the potential for significant methane emission to the atmosphere at ice‐out. We studied annual dissolved methane dynamics within a small (0.2 ha) Mackenzie River Delta lake using sensor and water sampling packages that autonomously and continuously collected lake water samples, respectively, for two years at multiple water column depths. Lake physical and biogeochemical properties (temperature; light; concentrations of dissolved oxygen, manganese, iron, and dissolved methane, including stable carbon, and radiocarbon isotopes) revealed annual patterns. Dissolved methane concentrations increase under‐ice after electron acceptors (oxygen, manganese, and iron oxides) are depleted or inaccessible from the water column. The radiocarbon age of dissolved methane suggests a source from recently decomposed carbon as opposed to thawed ancient permafrost. Sources of dissolved methane under‐ice include a diffusive flux from the sediments and may include water column methanogenesis and/or under‐ice hydrodynamic controls. Following ice‐out, the water column only partially mixes allowing half of the winter‐derived dissolved methane to be microbially oxidized. Despite oxidation at depth, surface water was a source of methane to the atmosphere. The greatest diffusive fluxes to the atmosphere occurred following ice‐out (75 mmol CH4m−2 d−1) and during a mixing episode in mid‐July, likely driven by a storm event. This study demonstrates the importance of fine‐scale temporal sampling to understand dissolved methane processes in seasonally ice‐covered lakes.

    more » « less
  4. Abstract

    In limnological studies of temperate lakes, most studies of carbon dioxide (CO2) and methane (CH4) emissions have focused on summer measurements of gas fluxes despite the importance of shoulder seasons to annual emissions. This is especially pertinent to dimictic, small lakes that maintain anoxic conditions and turnover quickly in the spring and fall. We examined CO2and CH4dynamics from January to October 2020 in a small humic lake in northern Wisconsin, United States through a combination of discrete sampling and high frequency buoy and eddy covariance data collection. Eddy covariance flux towers were installed on buoys at the center of the lake while it was still frozen to continually measure CO2and CH4across seasons. Despite evidence for only partial turnover during the spring, there was still a notable 19‐day pulse of CH4emissions after lake ice melted with an average daytime flux rate of 8–30 nmol CH4m−2s−1. Our estimate of CH4emissions during the spring pulse was 16 mmol CH4m−2compared to 22 mmol CH4m−2during the stratified period from June to August. We did not observe a linear accumulation of gases under‐ice in our sampling period during the late winter, suggesting the complexity of this dynamic period and the emphasis for direct measurements throughout the ice‐covered period. The results of our study help to better understand the magnitude and timing of greenhouse gas emissions in a region expected to experience warmer winters with decreased ice duration.

    more » « less
  5. Abstract

    The ongoing global temperature rise enhances permafrost thaw in the Arctic, allowing Pleistocene‐aged frozen soil organic matter to become available for microbial degradation and production of greenhouse gases, particularly methane. Here, we examined the extent and mechanism of anaerobic oxidation of methane (AOM) in the sediments of four interior Alaska thermokarst lakes, which formed and continue to expand as a result of ice‐rich permafrost thaw. In cores of surface (~ 1 m) lake sediments we quantified methane production (methanogenesis) and AOM rates using anaerobic incubation experiments in low (4°C) and high (16°C) temperatures. Methanogenesis rates were measured by the accumulation of methane over ~ 90 d, whereas AOM rates were measured by adding labeled‐13CH4and measuring the produced dissolved inorganic13C. Our results demonstrate that while methanogenesis was vigorous in these anoxic sediments, AOM was lower by two orders of magnitude. In almost all sediment depths and temperatures, AOM rates remained less than 2% of the methanogenesis rates. Experimental evidence indicates that the AOM is strongly related to methanogens, as the addition of a methanogens' inhibitor prevented AOM. Variety of electron acceptor additions did not stimulate AOM, and methanotrophs were scarcely detected. These observations suggest that the AOM signals in the incubation experiments might be a result of enzymatic reversibility (“back‐flux”) during CH4production, rather than thermodynamically favorable AOM. Regardless of the mechanism, the quantitative results show that near surface (< 1‐m) thermokarst sediments in interior Alaska have little to no buffer mechanisms capable of attenuating methane production in a warming climate.

    more » « less