skip to main content


Title: Coherent Mechanistic Patterns of Tropical Land Hydroclimate Changes
Abstract

Changes in tropical (30 S–30 N) land hydroclimate following CO2‐induced global warming are organized according to climatological aridity index (AI) and daily soil moisture (SM) percentiles. The transform from geographical space to this novel process‐oriented phase space allows for interpretation of local, daily mechanistic relationships between key hydroclimatic variables in the context of time‐mean and/or global‐mean energetic constraints and the wet‐get‐wetter/dry‐get‐drier paradigm. Results from 16 CMIP models show coherent patterns of change in the AI/SM phase space that are aligned with the established soil‐moisture/evapotranspiration regimes. We introduce an active‐rain regime as a special case of the energy‐limited regime. Rainfall shifts toward larger rain totals in this active‐rain regime, with less rain on other days, resulting in an overall SM reduction. Consequently, the regimes where SM constrains evapotranspiration become more frequently occupied, and corresponding hydroclimatic changes align with the position of the critical SM value in the AI/SM phase space.

 
more » « less
Award ID(s):
1743753
NSF-PAR ID:
10409561
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
7
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Drought is projected to become more severe and widespread as global warming continues in the 21 st century, but hydroclimatic changes and their drivers are not well examined in the latest projections from the Phase Six of the Coupled Model Inetercomparison Project (CMIP6). Here, precipitation (P), evapotranspiration (E), soil moisture (SM), and runoff (R) from 25 CMIP6 models, together with self-calibrated Palmer Drought Severity Index with Penman-Monteith potential evapotranspiration (scPDSIpm), are analyzed to quantify hydroclimatic and drought changes in the 21 st century and the underlying causes. Results confirm consistent drying in these hydroclimatic metrics across most of the Americas (including the Amazon), Europe and the Mediterranean region, southern Africa, and Australia; although the drying magnitude differs, with the drying being more severe and widespread in surface SM than in total SM. Global drought frequency based on surface SM and scPDSIpm increases by ~25%–100% (50%–200%) under the SSP2-4.5 (SSP5-8.5) scenario in the 21 st century together with large increases in drought duration and areas, which result from a decrease in the mean and flattening of the probability distribution functions of SM and scPDSIpm; while the R-based drought changes are relatively small. Changes in both P and E contribute to the SM change, whereas scPDSIpm decreases result from ubiquitous PET increases and P decreases over subtropical areas. The R changes are determined primarily by P changes, while the PET change explains most of the E increase. Inter-model spreads in surface SM and R changes are large, leading to large uncertainties in the drought projections. 
    more » « less
  2. Abstract

    Hurricane Florence made landfall over the Carolinas 14 September 2018, bringing over 30 inches of rainfall. What remains understudied is the possible storm re‐intensification by wet and warm antecedent soil moisture (ASM), known as the Brown Ocean Effect (BOE). This study investigates this effect with two approaches: (a) two satellite‐based soil moisture (SM) data and (b) model simulation. The averaged Cyclone Global Navigation System and Soil Moisture Active Passive SM enables examination of land‐atmosphere interaction at a sub‐daily scale. Both observations and simulation results manifest positive feedback between ASM and rainfall intensity, with 3 days prior to landfall being the typical antecedent time scale. Wet (dry) ASM lead to intense (light) and concentrated (widespread) rains. We also found that soil temperature can modulate the BOE. This study aims to advance our understanding of land‐atmosphere feedback and calls to acquire accurate antecedent land states to enhance forecast skills.

     
    more » « less
  3. Abstract

    Vegetation water content (VWC) plays a key role in transpiration, plant mortality, and wildfire risk. Although land surface models now often contain plant hydraulics schemes, there are few direct VWC measurements to constrain these models at global scale. One proposed solution to this data gap is passive microwave remote sensing, which is sensitive to temporal changes in VWC. Here, we test that approach by using synthetic microwave observations to constrain VWC and surface soil moisture within the Climate Modeling Alliance Land model. We further investigate the possible utility of sub‐daily observations of VWC, which could be obtained through a satellite in geostationary orbit or combinations of multiple satellites. These high‐temporal‐resolution observations could allow for improved determination of ecosystem parameters, carbon and water fluxes, and subsurface hydraulics, relative to the currently available twice‐daily sun‐synchronous observational patterns. We find that incorporating observations at four different times in the diurnal cycle (such as could be available from two sun‐synchronous satellites) provides a significantly better constraint on water and carbon fluxes than twice‐daily observations do. For example, the root mean square error of projected evapotranspiration and gross primary productivity during drought periods was reduced by approximately 40%, when using four‐times‐daily relative to twice‐daily observations. Adding hourly observations of the entire diurnal cycle did not further improve the inferred parameters and fluxes. Our comparison of observational strategies may be informative in the design of future satellite missions to study plant hydraulics, as well as when using existing remotely sensed data to study vegetation water stress response.

     
    more » « less
  4. Abstract

    The Consistent Artificial Intelligence (AI)-based Soil Moisture (CASM) dataset is a global, consistent, and long-term, remote sensing soil moisture (SM) dataset created using machine learning. It is based on the NASA Soil Moisture Active Passive (SMAP) satellite mission SM data and is aimed at extrapolating SMAP-like quality SM back in time using previous satellite microwave platforms. CASM represents SM in the top soil layer, and it is defined on a global 25 km EASE-2 grid and for 2002–2020 with a 3-day temporal resolution. The seasonal cycle is removed for the neural network training to ensure its skill is targeted at predicting SM extremes. CASM comparison to 367 globalin-situSM monitoring sites shows a SMAP-like median correlation of 0.66. Additionally, the SM product uncertainty was assessed, and both aleatoric and epistemic uncertainties were estimated and included in the dataset. CASM dataset can be used to study a wide range of hydrological, carbon cycle, and energy processes since only a consistent long-term dataset allows assessing changes in water availability and water stress.

     
    more » « less
  5. Abstract

    Among the ecosystem services provided by urban greenspace are the retention and infiltration of stormwater, which decreases urban flooding, and enhanced evapotranspiration, which helps mitigate urban heat island effects. Some types of urban greenspace, such as rain gardens and green roofs, are intentionally designed to enhance these hydrologic functions. Urban gardens, while primarily designed for food production and aesthetic benefits, may have similar hydrologic function, due to high levels of soil organic matter that promote infiltration and water holding capacity. We quantified leachate and soil moisture from experimental urban garden plots receiving various soil amendments (high and low levels of manure and municipal compost, synthetic fertilizer, and no inputs) over three years. Soil moisture varied across treatments, with highest mean levels observed in plots receiving manure compost, and lowest in plots receiving synthetic fertilizer. Soil amendment treatments explained little of the variation in weekly leachate volume, but among treatments, high municipal compost and synthetic fertilizer had lowest leachate volumes, and high and low manure compost had slightly higher mean leachate volumes. We used these data to parameterize a simple mass balance hydrologic model, focusing on high input municipal compost and no compost garden plots, as well as reference turfgrass plots. We ran the model for three growing seasons under ambient precipitation and three elevated precipitation scenarios. Garden plots received 12–16% greater total water inputs compared to turfgrass plots because of irrigation, but leachate totals were 20–30% lower for garden plots across climate scenarios, due to elevated evapotranspiration, which was 50–60% higher in garden plots. Within each climate scenario, difference between garden plots which received high levels of municipal compost and garden plots which received no additional compost were small relative to differences between garden plots and turfgrass. Taken together, these results indicate that garden soil amendments can influence water retention, and the high-water retention, infiltration, and evapotranspiration potential of garden soils relative to turfgrass indicates that hydrologic ecosystem services may be an underappreciated benefit of urban gardens.

     
    more » « less