Abstract Poststarburst galaxies (PSBs) are young quiescent galaxies that have recently experienced a rapid decrease in star formation, allowing us to probe the fast-quenching period of galaxy evolution. In this work, we obtained Hubble Space Telescope (HST)/WFC3 F110W imaging to measure the sizes of 171 massive ( spectroscopically identified PSBs at 1 <z1.3 selected from the DESI Survey Validation luminous red galaxy sample. This statistical sample constitutes an order of magnitude increase from the ∼20 PSBs with space-based imaging and deep spectroscopy. We perform structural fitting of the target galaxies withpysersicand compare them to quiescent and star-forming galaxies in the 3D-HST survey. We find that these PSBs are more compact than the general population of quiescent galaxies, lying systematically ∼0.1 dex below the established size–mass relation. However, their central surface mass densities are similar to those of their quiescent counterparts ( ). These findings are easily reconciled by later ex situ growth via minor mergers or a slight progenitor bias. These PSBs are round in projection (b/amedian∼ 0.8), suggesting that they are primarily spheroids, not disks, in 3D. We find no correlation between the time since quenching and light-weighted PSB sizes or central densities. This disfavors apparent structural growth due to the fading of centralized starbursts in this galaxy population. Instead, we posit that the fast quenching of massive galaxies at this epoch occurs preferentially in galaxies with preexisting compact structures. 
                        more » 
                        « less   
                    
                            
                            DESI Survey Validation Spectra Reveal an Increasing Fraction of Recently Quenched Galaxies at z ∼ 1
                        
                    
    
            Abstract We utilize ∼17,000 bright luminous red galaxies (LRGs) from the novel Dark Energy Spectroscopic Instrument Survey Validation spectroscopic sample, leveraging its deep (∼2.5 hr galaxy−1exposure time) spectra to characterize the contribution of recently quenched galaxies to the massive galaxy population at 0.4 <z< 1.3. We useProspectorto infer nonparametric star formation histories and identify a significant population of recently quenched galaxies that have joined the quiescent population within the past ∼1 Gyr. The highest-redshift subset (277 atz> 1) of our sample of recently quenched galaxies represents the largest spectroscopic sample of post-starburst galaxies at that epoch. At 0.4 <z< 0.8, we measure the number density of quiescent LRGs, finding that recently quenched galaxies constitute a growing fraction of the massive galaxy population with increasing look-back time. Finally, we quantify the importance of this population among massive ( > 11.2) LRGs by measuring the fraction of stellar mass each galaxy formed in the gigayear before observation,f1 Gyr. Although galaxies withf1 Gyr> 0.1 are rare atz∼ 0.4 (≲0.5% of the population), byz∼ 0.8, they constitute ∼3% of massive galaxies. Relaxing this threshold, we find that galaxies withf1 Gyr> 5% constitute ∼10% of the massive galaxy population atz∼ 0.8. We also identify a small but significant sample of galaxies atz= 1.1–1.3 that formed withf1 Gyr> 50%, implying that they may be analogs to high-redshift quiescent galaxies that formed on similar timescales. Future analysis of this unprecedented sample promises to illuminate the physical mechanisms that drive the quenching of massive galaxies after cosmic noon. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1907697
- PAR ID:
- 10409658
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 947
- Issue:
- 2
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L31
- Size(s):
- Article No. L31
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The measured ages of massive, quiescent galaxies atz∼ 3–4 imply that massive galaxies quench as early asz∼ 6. While the number of spectroscopic confirmations of quiescent galaxies atz< 3 has increased over the years, there are only a handful atz> 3.5. We report spectroscopic redshifts of one secure (z= 3.757) and two tentative (z= 3.336 andz= 4.673) massive ( ) quiescent galaxies with 11 hr of Keck/MOSFIREK-band observations. Our candidates were selected from the FLAMINGOS-2 Extragalactic Near-InfraredK-band Split (FENIKS) survey, which uses deep Gemini/Flamingos-2KbKrimaging optimized for increased sensitivity to the characteristic red colors of galaxies atz> 3 with a strong Balmer/4000 Å break. The rest-frameUVJand (ugi)scolors of three out of four quiescent candidates are consistent with 1–2 Gyr old stellar populations. This places these galaxies as the oldest objects at these redshifts, and challenges the notion that quiescent galaxies atz> 3 are all recently quenched, post-starburst galaxies. Our spectroscopy shows that the other quiescent-galaxy candidate is a broad-line active galactic nucleus (z= 3.594) with strong, redshifted Hβ+ [OIII] emission with a velocity offset > 1000 km s−1, indicative of a powerful outflow. The star formation history of our highest redshift candidate suggests that its progenitor was already in place byz∼ 7–11, reaching ∼1011M⊙byz≃ 8. These observations reveal the limit of what is possible with deep near-infrared photometry and targeted spectroscopy from the ground and demonstrate that secure spectroscopic confirmation of quiescent galaxies atz> 4 is feasible only with JWST.more » « less
- 
            Abstract In this work, we compare star formation histories of massive (10.5 12) galaxies in the UniverseMachine model to those measured from the Large Early Galaxy Astrophysics Census (LEGA-C) at 0.6 < z < 1. Following the LEGA-C study, we investigate how 50% (t50) and 90% (t90) formation timescales depend on total stellar mass. We find good agreement between the observed and model timescales for the star-forming population Δ tSF ≲ 1 Gyr across the full mass range. In contrast, the observed age-mass correlation is weaker for the quiescent population compared to UniverseMachine models (ΔtQ ≲ 2 Gyr), especially at the high-mass end. This indicates continued star formation or additional processes in the most massive quiescent galaxies, a behavior not accounted for in the UniverseMachine model.more » « less
- 
            Abstract We investigate how cosmic web structures affect galaxy quenching in the IllustrisTNG (TNG100) cosmological simulations by reconstructing the cosmic web within each snapshot using the DisPerSE framework. We measure the comoving distance from each galaxy with stellar mass to the nearest node (dnode) and the nearest filament spine (dfil) to study the dependence of both the median specific star formation rate (〈sSFR〉) and the median gas fraction (〈fgas〉) on these distances. We find that the 〈sSFR〉 of galaxies is only dependent on the cosmic web environment atz< 2, with the dependence increasing with time. Atz≤ 0.5, galaxies are quenched atdnode≲ 1 Mpc, and have significantly suppressed star formation atdfil≲ 1 Mpc, trends driven mostly by satellite galaxies. Atz≤ 1, in contrast to the monotonic drop in 〈sSFR〉 of galaxies with decreasingdnodeanddfil, galaxies—both centrals and satellites—experience an upturn in 〈sSFR〉 atdnode≲ 0.2 Mpc. Much of this cosmic web dependence of star formation activity can be explained by an evolution in 〈fgas〉. Our results suggest that in the past ∼10 Gyr, low-mass satellites are quenched by rapid gas stripping in dense environments near nodes and gradual gas starvation in intermediate-density environments near filaments. At earlier times, cosmic web structures efficiently channeled cold gas into most galaxies. State-of-the-art ongoing spectroscopic surveys such as the Sloan Digital Sky Survey and DESI, as well as those planned with the Subaru Prime Focus Spectrograph, JWST, and Roman, are required to test our predictions against observations.more » « less
- 
            Abstract We examine the quenching characteristics of 328 isolated dwarf galaxies within theRomulus25cosmological hydrodynamic simulation. Using mock-observation methods, we identify isolated dwarf galaxies with quenched star formation and make direct comparisons to the quenched fraction in the NASA Sloan Atlas (NSA). Similar to other cosmological simulations, we find a population of quenched, isolated dwarf galaxies belowMstar< 109M⊙not detected within the NSA. We find that the presence of massive black holes (MBHs) inRomulus25is largely responsible for the quenched, isolated dwarfs, while isolated dwarfs without an MBH are consistent with quiescent fractions observed in the field. Quenching occurs betweenz= 0.5–1, during which the available supply of star-forming gas is heated or evacuated by MBH feedback. Mergers or interactions seem to play little to no role in triggering the MBH feedback. At low stellar masses,Mstar≲ 109.3M⊙, quenching proceeds across several Gyr as the MBH slowly heats up gas in the central regions. At higher stellar masses,Mstar≳ 109.3M⊙, quenching occurs rapidly within 1 Gyr, with the MBH evacuating gas from the central few kpc of the galaxy and driving it to the outskirts of the halo. Our results indicate the possibility of substantial star formation suppression via MBH feedback within dwarf galaxies in the field. On the other hand, the apparent overquenching of dwarf galaxies due to MBH suggests that higher-resolution and/or better modeling is required for MBHs in dwarfs, and quenched fractions offer the opportunity to constrain current models.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
