skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: miR-489 Confines Uncontrolled Estrogen Signaling through a Negative Feedback Mechanism and Regulates Tamoxifen Resistance in Breast Cancer
Approximately 75% of diagnosed breast cancer tumors are estrogen-receptor-positive tumors and are associated with a better prognosis due to response to hormonal therapies. However, around 40% of patients relapse after hormonal therapies. Genomic analysis of gene expression profiles in primary breast cancers and tamoxifen-resistant cell lines suggested the potential role of miR-489 in the regulation of estrogen signaling and development of tamoxifen resistance. Our in vitro analysis showed that loss of miR-489 expression promoted tamoxifen resistance, while overexpression of miR-489 in tamoxifen-resistant cells restored tamoxifen sensitivity. Mechanistically, we found that miR-489 is an estrogen-regulated miRNA that negatively regulates estrogen receptor signaling by using at least the following two mechanisms: (i) modulation of the ER phosphorylation status by inhibiting MAPK and AKT kinase activities; (ii) regulation of nuclear-to-cytosol translocation of estrogen receptor α (ERα) by decreasing p38 expression and consequently ER phosphorylation. In addition, miR-489 can break the positive feed-forward loop between the estrogen-Erα axis and p38 MAPK in breast cancer cells, which is necessary for its function as a transcription factor. Overall, our study unveiled the underlying molecular mechanism by which miR-489 regulates an estrogen signaling pathway through a negative feedback loop and uncovered its role in both the development of and overcoming of tamoxifen resistance in breast cancers.  more » « less
Award ID(s):
1853365
PAR ID:
10409736
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
International Journal of Molecular Sciences
Volume:
23
Issue:
15
ISSN:
1422-0067
Page Range / eLocation ID:
8086
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Susceptibility to breast cancer is significantly increased in individuals with germ line mutations in RECQ1 (also known as RECQL or RECQL1 ), a gene encoding a DNA helicase essential for genome maintenance. We previously reported that RECQ1 expression predicts clinical outcomes for sporadic breast cancer patients stratified by estrogen receptor (ER) status. Here, we utilized an unbiased integrative genomics approach to delineate a cross talk between RECQ1 and ERα, a known master regulatory transcription factor in breast cancer. We found that expression of ESR1 , the gene encoding ERα, is directly activated by RECQ1. More than 35% of RECQ1 binding sites were cobound by ERα genome-wide. Mechanistically, RECQ1 cooperates with FOXA1, the pioneer transcription factor for ERα, to enhance chromatin accessibility at the ESR1 regulatory regions in a helicase activity-dependent manner. In clinical ERα-positive breast cancers treated with endocrine therapy, high RECQ1 and high FOXA1 coexpressing tumors were associated with better survival. Collectively, these results identify RECQ1 as a novel cofactor for ERα and uncover a previously unknown mechanism by which RECQ1 regulates disease-driving gene expression in ER-positive breast cancer cells. 
    more » « less
  2. Background: We investigated the association between reproductive risk factors and breast cancer subtype in Black women. On the basis of the previous literature, we hypothesized that the relative prevalence of specific breast cancer subtypes might differ according to reproductive factors. Methods: We conducted a pooled analysis of 2,188 (591 premenopausal, 1,597 postmenopausal) Black women with a primary diagnosis of breast cancer from four studies in the southeastern United States. Breast cancers were classified by clinical subtype. Case-only polytomous logistic regression models were used to estimate ORs and 95% confidence intervals (CI) for HER2+ and triple-negative breast cancer (TNBC) status in relation to estrogen receptor–positive (ER+)/HER2− status (referent) for reproductive risk factors. Results: Relative to women who had ER+/HER2− tumors, women who were age 19–24 years at first birth (OR, 1.78; 95% CI, 1.22–2.59) were more likely to have TNBC. Parous women were less likely to be diagnosed with HER2+ breast cancer and more likely to be diagnosed with TNBC relative to ER+/HER2− breast cancer. Postmenopausal parous women who breastfed were less likely to have TNBC [OR, 0.65 (95% CI, 0.43–0.99)]. Conclusions: This large pooled study of Black women with breast cancer revealed etiologic heterogeneity among breast cancer subtypes. Impact: Black parous women who do not breastfeed are more likely to be diagnosed with TNBC, which has a worse prognosis, than with ER+/HER2− breast cancer. 
    more » « less
  3. The CDK4/6 inhibitor palbociclib blocks cell cycle progression in Estrogen receptor–positive, human epidermal growth factor 2 receptor–negative (ER+/HER2−) breast tumor cells. Despite the drug’s success in improving patient outcomes, a small percentage of tumor cells continues to divide in the presence of palbociclib—a phenomenon we refer to as fractional resistance. It is critical to understand the cellular mechanisms underlying fractional resistance because the precise percentage of resistant cells in patient tissue is a strong predictor of clinical outcomes. Here, we hypothesize that fractional resistance arises from cell-to-cell differences in core cell cycle regulators that allow a subset of cells to escape CDK4/6 inhibitor therapy. We used multiplex, single-cell imaging to identify fractionally resistant cells in both cultured and primary breast tumor samples resected from patients. Resistant cells showed premature accumulation of multiple G1 regulators including E2F1, retinoblastoma protein, and CDK2, as well as enhanced sensitivity to pharmacological inhibition of CDK2 activity. Using trajectory inference approaches, we show how plasticity among cell cycle regulators gives rise to alternate cell cycle “paths” that allow individual tumor cells to escape palbociclib treatment. Understanding drivers of cell cycle plasticity, and how to eliminate resistant cell cycle paths, could lead to improved cancer therapies targeting fractionally resistant cells to improve patient outcomes. 
    more » « less
  4. Over the last decade, both early diagnosis and targeted therapy have improved the survival rates of many cancer patients. Most recently, immunotherapy has revolutionized the treatment options for cancers such as melanoma. Unfortunately, a significant portion of cancers (including lung and breast cancers) do not respond to immunotherapy, and many of them develop resistance to chemotherapy. Molecular characterization of non-responsive cancers suggest that an embryonic program known as epithelial-mesenchymal transition (EMT), which is mostly latent in adults, can be activated under selective pressures, rendering these cancers resistant to chemo- and immunotherapies. EMT can also drive tumor metastases, which in turn also suppress the cancer-fighting activity of cytotoxic T cells that traffic into the tumor, causing immunotherapy to fail. In this review, we compare and contrast immunotherapy treatment options of non-small cell lung cancer (NSCLC) and triple negative breast cancer (TNBC). We discuss why, despite breakthrough progress in immunotherapy, attaining predictable outcomes in the clinic is mostly an unsolved problem for these tumors. Although these two cancer types appear different based upon their tissues of origin and molecular classification, gene expression indicate that they possess many similarities. Patient tumors exhibit activation of EMT, and resulting stem cell properties in both these cancer types associate with metastasis and resistance to existing cancer therapies. In addition, the EMT transition in both these cancers plays a crucial role in immunosuppression, which exacerbates treatment resistance. To improve cancer-related survival we need to understand and circumvent, the mechanisms through which these tumors become therapy resistant. In this review, we discuss new information and complementary perspectives to inform combination treatment strategies to expand and improve the anti-tumor responses of currently available clinical immune checkpoint inhibitors. 
    more » « less
  5. Engineered three-dimensional (3D) cell culture models can accelerate drug discovery, and lead to new fundamental insights in cell–cell, cell–extracellular matrix (ECM), and cell–biomolecule interactions. Existing hydrogel or scaffold-based approaches for generating 3D tumor models do not possess significant tunability and possess limited scalability for high throughput drug screening. We have developed a new library of hydrogels, called Amikagels, which are derived from the crosslinking of amikacin hydrate (AH) and poly(ethylene glycol) diglycidyl ether (PEGDE). Here we describe the use of Amikagels for generating 3D tumor microenvironments (3DTMs) of breast cancer cells. Biological characteristics of these breast cancer 3DTMs, such as drug resistance and hypoxia were evaluated and compared to those of two-dimensional (2D) monolayer cultures. Estrogen receptor (ER) positive breast cancer 3DTMs formed on Amikagels were more dormant compared to their respective 2D monolayer cultures. Relative to their respective 2D cultures, breast cancer 3DTMs were resistant to cell death induced by mitoxantrone and doxorubicin, which are commonly used chemotherapeutic drugs in cancer, including breast cancer. The drug resistance seen in 3DTMs was correlated with hypoxia seen in these cultures but not in 2D monolayer cultures. Inhibition of Mucin 1 (MUC1), which is overexpressed in response to hypoxia, resulted in nearly complete cell death of 2D monolayer and 3DTMs of breast cancer. Combination of an ER stress inducer and MUC1 inhibition further enhanced cell death in 2D monolayer and 3DTMs. Taken together, this study shows that the Amikagel platform represents a novel technology for the generation of physiologically relevant 3DTMs in vitro and can serve as a platform to discover novel treatments for drug-resistant breast cancer. 
    more » « less