skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The EICAT+ framework enables classification of positive impacts of alien taxa on native biodiversity
Species introduced through human-related activities beyond their native range, termed alien species, have various impacts worldwide. The IUCN Environmental Impact Classification for Alien Taxa (EICAT) is a global standard to assess negative impacts of alien species on native biodiversity. Alien species can also positively affect biodiversity (for instance, through food and habitat provisioning or dispersal facilitation) but there is currently no standardized and evidence-based system to classify positive impacts. We fill this gap by proposing EICAT+, which uses 5 semiquantitative scenarios to categorize the magnitude of positive impacts, and describes underlying mechanisms. EICAT+ can be applied to all alien taxa at different spatial and organizational scales. The application of EICAT+ expands our understanding of the consequences of biological invasions and can inform conservation decisions.  more » « less
Award ID(s):
1852060
PAR ID:
10409829
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; « less
Date Published:
Journal Name:
PLOS Biology
Volume:
20
Issue:
8
ISSN:
1545-7885
Page Range / eLocation ID:
e3001729
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Outbreaks of zoonotic diseases are accelerating at an unprecedented rate in the current era of globalization, with substantial impacts on the global economy, public health, and sustainability. Alien species invasions have been hypothesized to be important to zoonotic diseases by introducing both existing and novel pathogens to invaded ranges. However, few studies have evaluated the generality of alien species facilitating zoonoses across multiple host and parasite taxa worldwide. Here, we simultaneously quantify the role of 795 established alien hosts on the 10,473 zoonosis events across the globe since the 14 th century. We observe an average of ~5.9 zoonoses per alien zoonotic host. After accounting for species-, disease-, and geographic-level sampling biases, spatial autocorrelation, and the lack of independence of zoonosis events, we find that the number of zoonosis events increase with the richness of alien zoonotic hosts, both across space and through time. We also detect positive associations between the number of zoonosis events per unit space and climate change, land-use change, biodiversity loss, human population density, and PubMed citations. These findings suggest that alien host introductions have likely contributed to zoonosis emergences throughout recent history and that minimizing future zoonotic host species introductions could have global health benefits. 
    more » « less
  2. JIA, Zhi-Yun (Ed.)
    Abstract Understanding how alien species assemble is crucial for predicting changes to community structure caused by biological invasions and for directing management strategies for alien species, but patterns and drivers of alien species assemblages remain poorly understood relative to native species. Climate has been suggested as a crucial filter of invasion-driven homogenization of biodiversity. However, it remains unclear which climatic factors drive the assemblage of alien species. Here, we compiled global data at both grid scale (2,653 native and 2,806 current grids with a resolution of 2° × 2°) and administrative scale (271 native and 297 current nations and sub-nations) on the distributions of 361 alien amphibians and reptiles (herpetofauna), the most threatened vertebrate group on the planet. We found that geographical distance, a proxy for natural dispersal barriers, was the dominant variable contributing to alien herpetofaunal assemblage in native ranges. In contrast, climatic factors explained more unique variation in alien herpetofaunal assemblage after than before invasions. This pattern was driven by extremely high temperatures and precipitation seasonality, 2 hallmarks of global climate change, and bilateral trade which can account for the alien assemblage after invasions. Our results indicated that human-assisted species introductions combined with climate change may accelerate the reorganization of global species distributions. 
    more » « less
  3. Non-native, invasive plants are projected to shift their ranges with climate change, creating hotspots of risk where a multitude of novel species may soon establish and spread. The Northeast U.S. is one such hotspot. However, because monitoring for novel species is costly, these range-shifting invasive plants need to be prioritized. Preventing negative impacts is a key goal of management, thus, comparing the potential impacts of range-shifting invasive species could inform this prioritization. Here, we adapted the environmental impacts classification for alien taxa protocol to evaluate potential impacts of 100 invasive plants that could establish either currently or by 2050 in the states of New York, Massachusetts, Connecticut, or Rhode Island. We searched Web of Science for each species and identified papers reporting ecological, economic, human health, or agricultural impacts. We scored ecological impacts from 1 (‘minimal concern’) to 4 (‘major’) and socio-ecological impacts as present or absent. We evaluated 865 impact studies and categorized 20 species as high-impact, 36 as medium-impact, and 26 as low-impact. We further refined high-impact invasive species based on whether major impacts affect ecosystems found in Northeast U.S. and identified five high-priority species: Anthriscus caucalis, Arundo donax, Avena barbata, Ludwigia grandiflora, and Rubus ulmifolius. Additional research is needed for 18 data-deficient species, which had no studies reporting impacts. Identifying and prioritizing range-shifting invasive plants provides a unique opportunity for early detection and rapid response that targets future problem species before they can establish and spread. This research illustrates the feasibility of using impacts assessments on range-shifting invasive species in order to inform proactive policy and management. 
    more » « less
  4. Abstract The ecological dynamics of co‐flowering communities are largely mediated by pollinators. However, current understanding of pollinator‐mediated interactions primarily relies on how co‐flowering plants influence attraction of shared pollinators, and much less is known about plant–plant interactions that occur via heterospecific pollen (HP) transfer. Invaded communities in particular can be highly affected by the transfer of alien pollen, but the strength, drivers and fitness consequences of these interactions at a community scale are not well understood.Here we analyse HP transfer networks in nine coastal communities in the Yucatan Mexico that vary in the relative abundance of invasive flowers to evaluate how HP donation and receipt varies between native and alien plants. We further evaluate whether HP donation and receipt are mediated by floral traits (e.g. display, flower size) or pollinator visitation rate. Finally, we evaluated whether post‐pollination success (proportion of pollen tubes produced) was affected by alien HP receipt and whether the effect varied between native and alien recipients.HP transfer networks exhibit relatively high connectance (c. 15%), suggesting high HP transfer within the studied communities. Significant network nestedness further suggests the existence of species that predominantly act as HP donors or recipients in the community. Species‐level analyses showed that natives receive 80% more HP compared to alien species, and that alien plants donate 40% more HP than natives. HP receipt and donation were mediated by different floral traits and such effects were independent of plant origin (native or alien). The proportion of alien HP received significantly affected conspecific pollen tube success in natives, but not that of alien species.Synthesis. Our results suggest that HP transfer in invaded communities is widespread, and that native and alien species play different roles within HP transfer networks, which are mediated by a different suite of floral traits. Alien species, in particular, play a central role as HP donors and are more tolerant to HP receipt than natives—a finding that points to two overlooked mechanisms facilitating alien plant invasion and success within native co‐flowering communities. 
    more » « less
  5. Abstract Understanding causes of insect population declines is essential for the development of successful conservation plans, but data limitations restrict assessment across spatial and temporal scales. Museum records represent a source of historical data that can be leveraged to investigate temporal trends in insect communities. Native lady beetle decline has been attributed to competition with established alien species and landscape change, but the relative importance of these drivers is difficult to measure with short‐term field‐based studies. We assessed distribution patterns for native lady beetles over 12 decades using museum records, and evaluated the relative importance of alien species and landscape change as factors contributing to changes in communities. We compiled occurrence records for 28 lady beetle species collected in Ohio, USA, from 1900 to 2018. Taxonomic beta‐diversity was used to evaluate changes in lady beetle community composition over time. To evaluate the relative influence of temporal, spatial, landscape, and community factors on the captures of native species, we constructed negative binomial generalized additive models. We report evidence of declines in captures for several native species. Importantly, the timing, severity, and drivers of these documented declines were species‐specific. Land cover change was associated with declines in captures, particularly forCoccinella novemnotatawhich declined prior to the arrival of alien species. Following the establishment and spread of alien lady beetles, processes of species loss/gain and turnover shifted communities toward the dominance of a few alien species beginning in the 1980s. Because factors associated with declines in captures were highly species‐specific, this emphasizes that mechanisms driving population losses cannot be generalized even among closely related native species. These findings also indicate the importance of museum holdings and the analysis of species‐level data when studying temporal trends in insect populations. 
    more » « less