skip to main content


Title: Orbital evolution of binaries in circumbinary discs
ABSTRACT

We present the to-date largest parameter space exploration of binaries in circumbinary discs (CBDs), deriving orbital evolution prescriptions for eccentric, unequal mass binaries from our suite of hydrodynamic simulations. In all cases, binary eccentricities evolve towards steady state values that increase with mass ratio, and saturate at an equilibrium eccentricity eb,eq ∼ 0.5 in the large mass ratio regime, in line with resonant theory. For binaries accreting at their combined Eddington limit, a steady state eccentricity can be achieved within a few megayears. Once at their steady state eccentricities, binaries with qb ≳ 0.3 evolve towards coalescence, while lower mass ratio systems expand due to CBD torques. We discuss implications for population studies of massive black hole binaries, protostars in binary systems, and post-common envelope binaries observed by ground-based gravitational wave detectors.

 
more » « less
NSF-PAR ID:
10409863
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
522
Issue:
2
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 2707-2717
Size(s):
p. 2707-2717
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Stellar-mass binary black holes (BBHs) embedded in active galactic nucleus (AGN) discs are possible progenitors of black hole mergers detected in gravitational waves by LIGO/VIRGO. To better understand the hydrodynamical evolution of BBHs interacting with the disc gas, we perform a suite of high-resolution 2D simulations of binaries in local disc (shearing-box) models, considering various binary mass ratios, eccentricities and background disc properties. We use the γ-law equation of state and adopt a robust post-processing treatment to evaluate the mass accretion rate, torque and energy transfer rate on the binary to determine its long-term orbital evolution. We find that circular comparable-mass binaries contract, with an orbital decay rate of a few times the mass doubling rate. Eccentric binaries always experience eccentricity damping. Prograde binaries with higher eccentricities or smaller mass ratios generally have slower orbital decay rates, with some extreme cases exhibiting orbital expansion. The averaged binary mass accretion rate depends on the physical size of the accretor. The accretion flows are highly variable, and the dominant variability frequency is the apparent binary orbital frequency (in the rotating frame around the central massive BH) for circular binaries but gradually shifts to the radial epicyclic frequency as the binary eccentricity increases. Our findings demonstrate that the dynamics of BBHs embedded in AGN discs is quite different from that of isolated binaries in their own circumbinary discs. Furthermore, our results suggest that the hardening time-scales of the binaries are much shorter than their migration time-scales in the disc, for all reasonable binary and disc parameters.

     
    more » « less
  2. ABSTRACT

    We recently derived, using the density-of-states approximation, analytic distribution functions for the outcomes of direct single-binary scatterings. Using these outcome distribution functions, we present in this paper a self-consistent statistical mechanics-based analytic model obtained using the Fokker–Planck limit of the Boltzmann equation. Our model quantifies the dominant gravitational physics, combining both strong and weak single–binary interactions, which drives the time evolution of binary orbital parameter distributions in dense stellar environments. We focus in particular the distributions of binary orbital energies and eccentricities. We find a novel steady-state distribution of binary eccentricities, featuring strong depletions of both the highest and the lowest eccentricity binaries. In energy space, we compare the predictions of our analytic model to the results of numerical N-body simulations, and find that the agreement is good for the initial conditions considered here. This work is a first step towards the development of a fully self-consistent semi-analytic model for dynamically evolving binary star populations in dense stellar environments due to direct few-body interactions.

     
    more » « less
  3. We determine the ability of Cosmic Explorer, a proposed third-generation gravitational-wave observatory, to detect eccentric binary neutron stars and to measure their eccentricity. We find that for a matched-filter search, template banks constructed using binaries in quasicircular orbits are effectual for eccentric neutron star binaries with e<0.004 (e<0.003)is the binary’s eccentricity at a gravitational-wave frequency of 7 Hz. We show that stochastic template placement can be used to construct a matched-filter search for binaries with larger eccentricities and construct an effectual template bank for binaries with e<0.05. We show that the computational cost of both the search for binaries in quasicircular orbits and eccentric orbits is not significantly larger for Cosmic Explorer than for Advanced LIGO and is accessible with present-day computational resources. We investigate Cosmic Explorer’s ability to distinguish between circular and eccentric binaries. We estimate that for a binary with a signal-to-noise ratio of 20 (800), Cosmic Explorer can distinguish between a circular binary and a binary with eccentricity e>~1e-2 (1e-3) at 90% confidence. 
    more » « less
  4. ABSTRACT

    We analyse the eccentric response of a low-mass coplanar circumbinary disc to secular tidal forcing by a Keplerian eccentric orbit central binary. The disc acquires a forced eccentricity whose magnitude depends on the properties of the binary and disc. The largest eccentricities occur when there is a global apsidal resonance in the disc. The driving frequency by the binary is its apsidal frequency, which is equal to zero. A global resonance occurs when the disc properties permit the existence of a zero apsidal frequency free eccentric mode. Resonances occur for different free eccentric modes, which differ in the number of radial nodes. For a disc not at resonance, the eccentricity distribution has somewhat similar form to the eccentricity distributions in discs at resonance that have the closest matching disc aspect ratios. For higher disc aspect ratios, the forced eccentricity distribution in a 2D disc is similar to that of the fundamental free mode. The forced eccentricity distribution in a 3D disc is similar to that of higher order free modes, not the fundamental mode, unless the disc is very cool. For parameters close to resonance, large phase shifts occur between the disc and binary eccentricities that are locked in phase. Forced eccentricity may play an important role in the evolution of circumbinary discs and their central binaries.

     
    more » « less
  5. ABSTRACT

    Massive Black Hole (MBH) binaries are considered to be one of the most important sources of Gravitational Waves (GW) that can be detected by GW detectors like LISA. However, there are a lot of uncertainties in the dynamics of MBH binaries in the stages leading up to the GW-emission phase. It has been recently suggested that Nuclear Star Clusters (NSCs) could provide a viable route to overcome the final parsec problem for MBH binaries at the centre of galaxies. NSCs are collisional systems where the dynamics would be altered by the presence of a mass spectrum. In this study, we use a suite of high-resolution N-body simulations with over 1 million particles to understand how collisional relaxation under the presence of a mass spectrum of NSC particles affects the dynamics of the MBH binary under the merger of two NSCs. We consider MBH binaries with different mass ratios and additional non-relaxed models. We find that mass-segregation driven by collisional relaxation can lead to accelerated hardening in lower mass ratio binaries but has the opposite effect in higher mass ratio binaries. Crucially, the relaxed models also demonstrate much lower eccentricities at binary formation and negligible growth during hardening stages leading to longer merger time-scales. The results are robust and highlight the importance of collisional relaxation on changing the dynamics of the binary. Our models are state-of-the-art, use zero softening, and high enough particle numbers to model NSCs realistically.

     
    more » « less