skip to main content

This content will become publicly available on October 26, 2023

Title: On the relationship between conspiracy theory beliefs, misinformation, and vaccine hesitancy
At the time of writing, nearly one hundred published studies demonstrate that beliefs in COVID-19 conspiracy theories and misinformation are negatively associated with COVID-19 preventive behaviors. These correlational findings are often interpreted as evidence that beliefs in conspiracy theories and misinformation are exogenous factors that shape human behavior, such as forgoing vaccination. This interpretation has motivated researchers to develop methods for “prebunking,” “debunking,” or otherwise limiting the spread of conspiracy theories and misinformation online. However, the robust literatures on conspiracy theory beliefs, health behaviors, and media effects lead us to question whether beliefs in conspiracy theories and misinformation should be treated as exogenous to vaccine hesitancy and refusal. Employing U.S. survey data (n = 2,065) from July 2021, we show that beliefs in COVID-19 conspiracy theories and misinformation are not only related to COVID-19 vaccine hesitancy and refusal, but also strongly associated with the same psychological, social, and political motivations theorized to drive COVID-19 vaccine hesitancy and refusal. These findings suggest that beliefs in conspiracy theories and misinformation might not always be an exogenous cause, but rather a manifestation of the same factors that lead to vaccine hesitancy and refusal. We conclude by encouraging researchers to carefully consider modeling choices more » and imploring practitioners to refocus on the worldviews, personality traits, and political orientations that underlie both health-related behaviors and beliefs in conspiracy theories and misinformation. « less
Authors:
; ; ;
Editors:
Jonason, Peter Karl
Award ID(s):
2123635
Publication Date:
NSF-PAR ID:
10409922
Journal Name:
PLOS ONE
Volume:
17
Issue:
10
Page Range or eLocation-ID:
e0276082
ISSN:
1932-6203
Sponsoring Org:
National Science Foundation
More Like this
  1. Conspiracy theories and misinformation (CTM) became a salient feature of the Trump era. However, traditional explanations of political attitudes and behaviors inadequately account for beliefs in CTM or the deleterious behaviors they are associated with. Here, we integrate disparate literatures to explain beliefs in CTM regarding COVID-19, QAnon, and voter fraud. We aim to provide a more holistic accounting, and to determine which political, psychological, and social factors are most associated with such beliefs. Using a unique national survey, we find that anti-social personality traits, anti-establishment orientations, and support for Donald Trump are more strongly related to beliefs in CTM than traditional left-right orientations or other frequently posited factors, such as education, science literacy, and social media use. Our findings encourage researchers to move beyond the traditional correlates of political behavior when examining beliefs that express anti-social tendencies or a deep skepticism of social and political institutions.

  2. Abstract

    Widespread uptake of vaccines is necessary to achieve herd immunity. However, uptake rates have varied across U.S. states during the first six months of the COVID-19 vaccination program. Misbeliefs may play an important role in vaccine hesitancy, and there is a need to understand relationships between misinformation, beliefs, behaviors, and health outcomes. Here we investigate the extent to which COVID-19 vaccination rates and vaccine hesitancy are associated with levels of online misinformation about vaccines. We also look for evidence of directionality from online misinformation to vaccine hesitancy. We find a negative relationship between misinformation and vaccination uptake rates. Online misinformation is also correlated with vaccine hesitancy rates taken from survey data. Associations between vaccine outcomes and misinformation remain significant when accounting for political as well as demographic and socioeconomic factors. While vaccine hesitancy is strongly associated with Republican vote share, we observe that the effect of online misinformation on hesitancy is strongest across Democratic rather than Republican counties. Granger causality analysis shows evidence for a directional relationship from online misinformation to vaccine hesitancy. Our results support a need for interventions that address misbeliefs, allowing individuals to make better-informed health decisions.

  3. Abstract Background

    COVID-19 disproportionately affects those with preexisting conditions, but little research has determined whether those with chronic diseases view the pandemic itself differently - and whether there are differences between chronic diseases. We theorized that while individuals with respiratory disease or autoimmune disorders would perceive greater threat from COVID-19 and be more supportive of non-pharmaceutical interventions (NPIs), those with autoimmune disorders would be less likely to support vaccination-based interventions.

    Methods

    We conducted a two-wave online survey conducted in February and November 2021 asking respondents their beliefs about COVID-19 risk perception, adoption and support of interventions, willingness to be vaccinated against COVID-19, and reasons for vaccination. Regression analysis was conducted to assess the relationship of respondents reporting a chronic disease and COVID-19 behaviors and attitudes, compared to healthy respondents adjusting for demographic and political factors.

    Results

    In the initial survey, individuals reporting a chronic disease had both stronger feelings of risk from COVID-19 as well as preferences for NPIs than healthy controls. The only NPI that was still practiced significantly more compared to healthy controls in the resample was limiting trips outside of the home. Support for community-level NPIs was higher among individuals reporting a chronic disease than healthy controls and remained highmore »among those with respiratory diseases in sample 2. Vaccine acceptance produced more divergent results: those reporting chronic respiratory diseases were 6% more willing to be vaccinated than healthy controls, while we found no significant difference between individuals with autoimmune diseases and healthy controls. Respondents with chronic respiratory disease and those with autoimmune diseases were more likely to want to be vaccinated to protect themselves from COVID-19, and those with an autoimmune disease were more likely to report fear of a bad vaccine reaction as the reason for vaccine hesitancy. In the resample, neither those with respiratory diseases nor autoimmune diseases reported being more willing to receive a booster vaccine than healthy controls.

    Conclusions

    It is not enough to recognize the importance of health in determining attitudes: nuanced differences between conditions must also be recognized.

    « less
  4. Misinformation runs rampant on social media and has been tied to adverse health behaviors such as vaccine hesitancy. Crowdsourcing can be a means to detect and impede the spread of misinformation online. However, past studies have not deeply examined the individual characteristics - such as cognitive factors and biases - that predict crowdworker accuracy at identifying misinformation. In our study (n = 265), Amazon Mechanical Turk (MTurk) workers and university students assessed the truthfulness and sentiment of COVID-19 related tweets as well as answered several surveys on personal characteristics. Results support the viability of crowdsourcing for assessing misinformation and content stance (i.e., sentiment) related to ongoing and politically-charged topics like the COVID-19 pandemic, however, alignment with experts depends on who is in the crowd. Specifically, we find that respondents with high Cognitive Reflection Test (CRT) scores, conscientiousness, and trust in medical scientists are more aligned with experts while respondents with high Need for Cognitive Closure (NFCC) and those who lean politically conservative are less aligned with experts. We see differences between recruitment platforms as well, as our data shows university students are on average more aligned with experts than MTurk workers, most likely due to overall differences in participant characteristicsmore »on each platform. Results offer transparency into how crowd composition affects misinformation and stance assessment and have implications on future crowd recruitment and filtering practices.« less
  5. While COVID-19 text misinformation has already been investigated by various scholars, fewer research efforts have been devoted to characterizing and understanding COVID-19 misinformation that is carried out through visuals like photographs and memes. In this paper, we present a mixed-method analysis of image-based COVID-19 misinformation in 2020 on Twitter. We deploy a computational pipeline to identify COVID-19 related tweets, download the images contained in them, and group together visually similar images. We then develop a codebook to characterize COVID-19 misinformation and manually label images as misinformation or not. Finally, we perform a quantitative analysis of tweets containing COVID-19 misinformation images. We identify five types of COVID-19 misinformation, from a wrong understanding of the threat severity of COVID-19 to the promotion of fake cures and conspiracy theories. We also find that tweets containing COVID-19 misinformation images do not receive more interactions than baseline tweets with random images posted by the same set of users. As for temporal properties, COVID-19 misinformation images are shared for longer periods of time than non-misinformation ones, as well as have longer burst times. %\ywi added "have'' %\ywFor RQ2, we compare non-misinformation images instead of random images, and so it is not a direct comparison. When lookingmore »at the users sharing COVID-19 misinformation images on Twitter from the perspective of their political leanings, we find that pro-Democrat and pro-Republican users share a similar amount of tweets containing misleading or false COVID-19 images. However, the types of images that they share are different: while pro-Democrat users focus on misleading claims about the Trump administration's response to the pandemic, as well as often sharing manipulated images intended as satire, pro-Republican users often promote hydroxychloroquine, an ineffective medicine against COVID-19, as well as conspiracy theories about the origin of the virus. Our analysis sets a basis for better understanding COVID-19 misinformation images on social media and the nuances in effectively moderate them.« less