skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Arrhythmic sudden death survival prediction using deep learning analysis of scarring in the heart
Abstract Sudden cardiac death from arrhythmia is a major cause of mortality worldwide. In this study, we developed a novel deep learning (DL) approach that blends neural networks and survival analysis to predict patient-specific survival curves from contrast-enhanced cardiac magnetic resonance images and clinical covariates for patients with ischemic heart disease. The DL-predicted survival curves offer accurate predictions at times up to 10 years and allow for estimation of uncertainty in predictions. The performance of this learning architecture was evaluated on multi-center internal validation data and tested on an independent test set, achieving concordance indexes of 0.83 and 0.74 and 10-year integrated Brier scores of 0.12 and 0.14. We demonstrate that our DL approach, with only raw cardiac images as input, outperforms standard survival models constructed using clinical covariates. This technology has the potential to transform clinical decision-making by offering accurate and generalizable predictions of patient-specific survival probabilities of arrhythmic death over time.  more » « less
Award ID(s):
1837991
PAR ID:
10410076
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Cardiovascular Research
Volume:
1
Issue:
4
ISSN:
2731-0590
Page Range / eLocation ID:
334 to 343
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Patients resuscitated from cardiac arrest who enter a coma are at high risk of death. Forecasting neurological outcomes of these patients (i.e., the task of neurological prognostication) could help with treatment decisions: which patients are likely to awaken from their coma and should be kept on life-sustaining therapies, and which are so ill that they would unlikely benefit from treatment? In this paper, we propose, to the best of our knowledge, the first dynamic framework for neurological prognostication of post-cardiac-arrest comatose patients using EEG data: our framework makes predictions for a patient over time as more EEG data become available, and different training patients’ available EEG time series could vary in length. Predictions themselves are phrased in terms of either time-to-event outcomes (time-to-awakening or time-to-death) or as the patient’s probability of awakening or of dying across multiple time horizons (e.g., within the next 24, 48, or 72 hours). Our framework is based on using any dynamic survival analysis model that supports competing risks in the form of estimating patient-level cumulative incidence functions. We consider three competing risks as to what happens first to a patient: awakening, being withdrawn from life-sustaining therapies (and thus deterministically dying), or dying (by other causes). For some patients, we do not know which of these happened first since they were still in a coma when data collection stopped (i.e., their outcome is censored). Competing risks models readily accommodate such patients. We demonstrate our framework by benchmarking three existing dynamic survival analysis models that support competing risks on a real dataset of 922 post-cardiac-arrest coma patients. Our main experimental findings are that: (1) the classical Fine and Gray model which only uses a patient’s static features and summary statistics from the patient’s latest hour’s worth of EEG data is highly competitive, achieving accuracy scores as high as the recently developed Dynamic-DeepHit model that uses substantially more of the patient’s EEG data; and (2) in an ablation study, we show that our choice of modeling three competing risks results in a model that is at least as accurate while learning more information than simpler models (using two competing risks or a standard survival analysis setup with no competing risks). 
    more » « less
  2. Faithful, accurate, and successful cardiac biomechanics and electrophysiological simulations require patient-specific geometric models of the heart. Since the cardiac geometry consists of highly-curved boundaries, the use of high-order meshes with curved elements would ensure that the various curves and features present in the cardiac geometry are well-captured and preserved in the corresponding mesh. Most other existing mesh generation techniques require computer-aided design files to represent the geometric boundary, which are often not available for biomedical applications. Unlike such methods, our technique takes a high-order surface mesh, generated from patient medical images, as input and generates a high-order volume mesh directly from the curved surface mesh. In this paper, we use our direct high-order curvilinear tetrahedral mesh generation method [1] to generate several second-order cardiac meshes. Our meshes include the left ventricle myocardia of a healthy heart and hearts with dilated and hypertrophic cardiomyopathy. We show that our high-order cardiac meshes do not contain inverted elements and are of sufficiently high quality for use in cardiac finite element simulations. 
    more » « less
  3. We introduce a statistical procedure that integrates survival data from multiple biomedical studies, to improve the accuracy of predictions of survival or other events, based on individual clinical and genomic profiles, compared to models developed leveraging only a single study or meta-analytic methods. The method accounts for potential differences in the relation between predictors and outcomes across studies, due to distinct patient populations, treatments and technologies to measure outcomes and biomarkers. These differences are modeled explicitly with study-specific parameters. We use hierarchical regularization to shrink the study-specific parameters towards each other and to borrow information across studies. Shrinkage of the study-specific parameters is controlled by a similarity matrix, which summarizes differences and similarities of the relations between covariates and outcomes across studies. We illustrate the method in a simulation study and using a collection of gene-expression datasets in ovarian cancer. We show that the proposed model increases the accuracy of survival prediction compared to alternative meta-analytic methods. 
    more » « less
  4. Objective: Evaluate the effectiveness of machine learning tools that incorporate spatial information such as disease location and lymph node metastatic patterns-of-spread, for prediction of survival and toxicity in HPV+ oropharyngeal cancer (OPC). Materials & methods: 675 HPV+ OPC patients that were treated at MD Anderson Cancer Center between 2005 and 2013 with curative intent IMRT were retrospectively collected under IRB approval. Risk stratifications incorporating patient radiometric data and lymph node metastasis patterns via an anatomically-adjacent representation with hierarchical clustering were identified. These clusterings were combined into a 3-level patient stratification and included along with other known clinical features in a Cox model for predicting survival outcomes, and logistic regression for toxicity, using independent subsets for training and validation. Results: Four groups were identified and combined into a 3-level stratification. The inclusion of patient stratifications in predictive models for 5-yr Overall survival (OS), 5-year recurrence free survival, (RFS) and Radiation-associated dysphagia (RAD) consistently improved model performance measured using the area under the curve (AUC). Test set AUC improvements over models with clinical covariates, was 9 % for predicting OS, and 18 % for predicting RFS, and 7 % for predicting RAD. For models with both clinical and AJCC covariates, AUC improvement was 7 %, 9 %, and 2 % for OS, RFS, and RAD, respectively. Conclusion: Including data-driven patient stratifications considerably improve prognosis for survival and toxicity outcomes over the performance achieved by clinical staging and clinical covariates alone. These stratifications generalize well to across cohorts, and sufficient information for reproducing these clusters is included. 
    more » « less
  5. Abstract We introduce a statistical procedure that integrates datasets from multiple biomedical studies to predict patients' survival, based on individual clinical and genomic profiles. The proposed procedure accounts for potential differences in the relation between predictors and outcomes across studies, due to distinct patient populations, treatments and technologies to measure outcomes and biomarkers. These differences are modeled explicitly with study‐specific parameters. We use hierarchical regularization to shrink the study‐specific parameters towards each other and to borrow information across studies. The estimation of the study‐specific parameters utilizes a similarity matrix, which summarizes differences and similarities of the relations between covariates and outcomes across studies. We illustrate the method in a simulation study and using a collection of gene expression datasets in ovarian cancer. We show that the proposed model increases the accuracy of survival predictions compared to alternative meta‐analytic methods. 
    more » « less