CRISPR-Cas12a is an RNA-guided, programmable genome editing enzyme found within bacterial adaptive immune pathways. Unlike CRISPR-Cas9, Cas12a uses only a single catalytic site to both cleave target double-stranded DNA (dsDNA) (cis-activity) and indiscriminately degrade single-stranded DNA (ssDNA) (trans-activity). To investigate how the relative potency of cis- versus trans-DNase activity affects Cas12a-mediated genome editing, we first used structure-guided engineering to generate variants of Lachnospiraceae bacterium Cas12a that selectively disrupt trans-activity. The resulting engineered mutant with the biggest differential between cis- and trans-DNase activity in vitro showed minimal genome editing activity in human cells, motivating a second set of experiments using directed evolution to generate additional mutants with robust genome editing activity. Notably, these engineered and evolved mutants had enhanced ability to induce homology-directed repair (HDR) editing by 2–18-fold compared to wild-type Cas12a when using HDR donors containing mismatches with crRNA at the PAM-distal region. Finally, a site-specific reversion mutation produced improved Cas12a (iCas12a) variants with superior genome editing efficiency at genomic sites that are difficult to edit using wild-type Cas12a. This strategy establishes a pipeline for creating improved genome editing tools by combining structural insights with randomization and selection. The available structures of other CRISPR-Cas enzymes will enable this strategy to be applied to improve the efficacy of other genome-editing proteins.
Cas12a (formerly known as Cpf1), the class II type V CRISPR nuclease, has been widely used for genome editing in mammalian cells and plants due to its distinct characteristics from Cas9. Despite being one of the most robust Cas12a nucleases, LbCas12a in general is less efficient than SpCas9 for genome editing in human cells, animals, and plants.
To improve the editing efficiency of LbCas12a, we conduct saturation mutagenesis in
Our results demonstrate that LbCas12a-RVQ is a powerful tool for genome editing in human cells while LbCas12a-RRV confers robust genome editing in plants. Our study reveals the tremendous potential of these LbCas12a variants for advancing precision genome editing applications across a wide range of organisms.
- NSF-PAR ID:
- 10410171
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Genome Biology
- Volume:
- 24
- Issue:
- 1
- ISSN:
- 1474-760X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Cas12a, also known as Cpf1, is a highly versatile CRISPR-Cas enzyme that has been widely used in genome editing. Unlike its well-known counterpart, Cas9, Cas12a has unique features that make it a highly efficient genome editing tool at AT-rich genomic regions. To enrich the CRISPR-Cas12a plant genome editing toolbox, we explored 17 novel Cas12a orthologs for their genome editing capabilities in plants. Out of them, Ev1Cas12a and Hs1Cas12a showed efficient multiplexed genome editing in rice and tomato protoplasts. Notably, Hs1Cas12a exhibited greater tolerance to lower temperatures. Moreover, Hs1Cas12a generated up to 87.5% biallelic editing in rice T0plants. Both Ev1Cas12a and Hs1Cas12a achieved effective editing in poplar T0plants, with up to 100% of plants edited, albeit with high chimerism. Taken together, the efficient genome editing demonstrated by Ev1Cas12a and Hs1Cas12a in both monocot and dicot plants highlights their potential as promising genome editing tools in plant species and beyond.
-
null (Ed.)Abstract CRISPR-Cas12a is a promising genome editing system for targeting AT-rich genomic regions. Comprehensive genome engineering requires simultaneous targeting of multiple genes at defined locations. Here, to expand the targeting scope of Cas12a, we screen nine Cas12a orthologs that have not been demonstrated in plants, and identify six, ErCas12a, Lb5Cas12a, BsCas12a, Mb2Cas12a, TsCas12a and MbCas12a, that possess high editing activity in rice. Among them, Mb2Cas12a stands out with high editing efficiency and tolerance to low temperature. An engineered Mb2Cas12a-RVRR variant enables editing with more relaxed PAM requirements in rice, yielding two times higher genome coverage than the wild type SpCas9. To enable large-scale genome engineering, we compare 12 multiplexed Cas12a systems and identify a potent system that exhibits nearly 100% biallelic editing efficiency with the ability to target as many as 16 sites in rice. This is the highest level of multiplex edits in plants to date using Cas12a. Two compact single transcript unit CRISPR-Cas12a interference systems are also developed for multi-gene repression in rice and Arabidopsis . This study greatly expands the targeting scope of Cas12a for crop genome engineering.more » « less
-
Abstract The clustered regularly interspaced short palindromic repeats (CRISPR) systems have been demonstrated to be the foremost compelling genetic tools for manipulating prokaryotic and eukaryotic genomes. Despite the robustness and versatility of Cas9 and Cas12a/b nucleases in mammalian cells and plants, their large protein sizes may hinder downstream applications. Therefore, investigating compact CRISPR nucleases will unlock numerous genome editing and delivery challenges that constrain genetic engineering and crop development. In this study, we assessed the archaeal miniature Un1Cas12f1 type‐V CRISPR nuclease for genome editing in rice and tomato protoplasts. By adopting the reengineered guide RNA modifications ge4.1 and comparing polymerase II (Pol II) and polymerase III (Pol III) promoters, we demonstrated uncultured archaeon Cas12f1 (Un1Cas12f1) genome editing efficacy in rice and tomato protoplasts. We characterized the protospacer adjacent motif (PAM) requirements and mutation profiles of Un1Cas12f1 in both plant species. Interestingly, we found that Pol III promoters, not Pol II promoters, led to higher genome editing efficiency when they were used to drive guide RNA expression. Unlike in mammalian cells, the engineered Un1Cas12f1‐RRA variant did not perform better than the wild‐type Un1Cas12f1 nuclease, suggesting continued protein engineering and other innovative approaches are needed to further improve Un1Cas12f1 genome editing in plants.
-
Summary CRISPR‐Cas9 is widely used for genome editing, but its PAM sequence requirements limit its efficiency. In this study, we explore
Faecalibaculum rodentium Cas9 (FrCas9) for plant genome editing, especially in rice. FrCas9 recognizes a concise 5′‐NNTA‐3′ PAM, targeting more abundant palindromic TA sites in plant genomes than the 5′‐NGG‐3′ PAM sites of the most popular SpCas9. FrCas9 shows cleavage activities at all tested 5′‐NNTA‐3′ PAM sites with editing outcomes sharing the same characteristics of a typical CRISPR‐Cas9 system. FrCas9 induces high‐efficiency targeted mutagenesis in stable rice lines, readily generating biallelic mutants with expected phenotypes. We augment FrCas9's ability to generate larger deletions through fusion with the exonuclease, TREX2. TREX2‐FrCas9 generates much larger deletions than FrCas9 without compromise in editing efficiency. We demonstrate TREX2‐FrCas9 as an efficient tool for genetic knockout of a microRNA gene. Furthermore, FrCas9‐derived cytosine base editors (CBEs) and adenine base editors (ABE) are developed to produce targeted C‐to‐T and A‐to‐G base edits in rice plants. Whole‐genome sequencing‐based off‐target analysis suggests that FrCas9 is a highly specific nuclease. Expression of TREX2‐FrCas9 in plants, however, causes detectable guide RNA‐independent off‐target mutations, mostly as single nucleotide variants (SNVs). Together, we have established an efficient CRISPR‐FrCas9 system for targeted mutagenesis, large deletions, C‐to‐T base editing, and A‐to‐G base editing in plants. The simple palindromic TA motif in the PAM makes the CRISPR‐FrCas9 system a promising tool for genome editing in plants with an expanded targeting scope.