The so-called “4.2 ka event” is a dramatic climate oscillation that impacted many areas of the mid-to-low latitudes spanning roughly 4.2-3.9 ka (ka = thousands of years ago). Records of this event have been identified on every continent except Antarctica, with clear evidence of precipitation being affected on a large scale. Subtropical and tropical regions of Africa and Asia experienced drought, while mid-latitude areas of Africa and Europe saw anomalously wet conditions. The 4.2 ka event is argued to have had a substantial cultural impact, including the collapse of numerous dynasties and cultures such as in the Indus valley and south-central China, as well as parts of Mesopotamia, northeastern Africa, and across parts of southeast Asia. However, despite its wide geographic extent and societal importance, a great deal remains unknown about the 4.2 ka event, its global effects, and its origins. The apparent lack of a climate anomaly in the polar regions at 4.2 ka suggests it may have originated in the tropics, possibly through the El Niño-Southern Oscillation (ENSO). I analyzed a stalagmite (SB-18) from Siddha Cave, located in the Pokhara Valley of central Nepal (28.0N, 84.0E elev.~600 meters), a region that receives 80% of its annual 1500 mm of rainfall from the Indian Summer Monsoon (ISM). In contrast to many tropical stalagmite records, which use oxygen isotopes to track past monsoon rainfall, I focused on carbon isotopes because at Siddha Cave, oxygen isotopes in rainfall do not have a strong correlation to rainfall amount (the so-called “amount effect”). Carbon isotopes respond to hydroclimate variability through prior aragonite precipitation (PAP), which reflects out-gassing of carbon dioxide and precipitation of aragonite in voids in the bedrock above the cave. This process preferentially removes 12C from the infiltrating water that subsequently migrates downward into the cave. During periods with less rainfall, open spaces in the bedrock are more likely to be dewatered, thereby allowing for more prior aragonite precipitation. In order to ensure that carbon isotopes accurately capture ISM rainfall variability, I also examined uranium abundances in the same stalagmite. Changes in the concentration of uranium are also driven by PAP: uranium is incorporated into aragonite preferentially over dripwater and thus PAP reduces the amount of uranium in dripwater, thereby decreasing uranium in the underlying stalagmite. Carbon isotopes and U abundances in SB-18 suggest that central Nepal experienced anomalously high rainfall during the 4.2 ka event, in contrast with the majority of lower latitude sites around the globe, including a cave record from northeastern India, that record a reduction in rainfall at this time. This rainfall dipole provides an important climatic fingerprint that allows us to investigate the origins of the 4.2 ka event through analysis of modern climate data, including rainfall anomalies associated with ENSO. 
                        more » 
                        « less   
                    
                            
                            A precisely-dated, composite stalagmite record of Indian summer monsoon variability from Siddha Baba cave, central Nepal, for the last 2700 yr
                        
                    
    
            The Indian summer monsoon (ISM), which today supplies ~75% of annual precipitation to South Asia, has been reconstructed across previous centuries using a variety of hydroclimate-sensitive proxies. In some of these cases, ISM variability far exceeds that observed in the century-and-a-half-long instrumental record. Understanding the origins of these events is best addressed by developing a wide-ranging, multi-proxy network of high-resolution ISM reconstructions. In Nepal, ISM variability has been examined through tree rings, glacial ice, and lake sediments, but no stalagmite isotopic records of ISM rainfall have yet been published. Here we present a sub-decadally-resolved, precisely-dated, composite aragonite stalagmite record of ISM variability from Siddha Baba cave, central Nepal, for the last 2.7 kyr. A rainwater sampling program near the cave site, and a published study from Kathmandu (Adhikari et al., 2020), 150 km to the southeast, reveal that rainfall amount explains little of the observed variance in d18O values. Local hydroclimate is thus reconstructed from stalagmite 13C values, which we interpret as reflecting prior aragonite precipitation driven by changes in effective precipitation above the cave. ISM variability is apparent across a number of time scales, including centennial periods of reduced or enhanced rainfall coincident with societally-relevant precipitation regimes identified at other sites across South Asia. These include the Neo-Assyrian drought in the eastern Mediterranean and Middle East (2.7-2.5 kyr BP; Kathayat et al., 2019), the Mauria Empire (2.1-1.9 kyr BP), and the Guge Kingdom (0.9-0.3 kyr BP) pluvials in India and Tibet (Kathayat et al., 2017). A secular shift toward drier conditions since 0.5 kyr BP in the Siddha Baba record tracks the 18O records from Dasuopu glacier, Nepal Himalaya, and Sahiya cave, North India. Numerous multidecadal oscillations are also evident, including markedly wetter conditions during the 18th century, in the late Little Ice Age, apparent in the Dasuopu and Sahiya records. References Adhikari et al. (2020) Tellus B: Chem. Phys. Meteor., 72, 1-17. Kathayat et al. (2017) Sc. Adv., 7, e1701296. Kathayat et al. (2019) Sci. Adv., 5, eaax6656. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2102864
- PAR ID:
- 10410178
- Date Published:
- Journal Name:
- Transactions American Geophysical Union
- ISSN:
- 0002-8606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The Indian Summer Monsoon [ISM] provides approximately 80% of South Asia’s annual average precipitation. Nepal represents a particularly important sector of the ISM because of its location at the base of the Himalayas, Asia’s water tower, and in the zone of influence of the mid-latitude westerlies. Late Holocene ISM variability has previously been examined using high resolution resolved stable isotope records of stalagmites from northern, northeastern, and central India, but as of yet, no such records have been published from Nepal. We present high resolution stable isotopic time series from two precisely-dated and partially overlapping stalagmites spanning the last 2400 years from Siddha Baba Cave, central Nepal, as well as a year of isotopic data from rainwater collected near the cave. It has been suggested that the amount effect has only a minor effect on the oxygen isotope variability in precipitation in this area. As a result, we couple oxygen and carbon isotopes from these stalagmites to examine both regional and local-scale ISM dynamics. The Siddha Baba record reveals two periods suggestive of changes in the ISM: an apparent increase in rainfall during approximately CE 1350-1550 and a reduction in rainfall characterizing the last two centuries. We investigate these intervals using the Last Millennium Ensemble, a state-of-the-art suite of climate model simulations conducted by the National Center for Atmospheric Research with the Community Earth System Model. A primary focus is on links between Indo-Pacific ocean-atmosphere interactions and subsequent changes in the monsoon circulation over the Indian subcontinent, as well as regional moisture transport into Nepal between these periods.more » « less
- 
            The Indian Summer Monsoon [ISM] provides approximately 80% of South Asia’s annual average precipitation. Nepal represents a particularly important sector of the ISM because of its location at the base of the Himalayas, Asia’s water tower, and in the zone of influence of the mid-latitude westerlies. Late Holocene ISM variability has previously been examined using high resolution resolved stable isotope records of stalagmites from northern, northeastern, and central India, but as of yet, no such records have been published from Nepal. We present high resolution stable isotopic time series from two precisely-dated and partially overlapping stalagmites spanning the last 2400 years from Siddha Baba Cave, central Nepal, as well as a year of isotopic data from rainwater collected near the cave. It has been suggested that the amount effect has only a minor effect on the oxygen isotope variability in precipitation in this area. As a result, we couple oxygen and carbon isotopes from these stalagmites to examine both regional and local-scale ISM dynamics. The Siddha Baba record reveals two periods suggestive of changes in the ISM: an apparent increase in rainfall during approximately CE 1350-1550 and a reduction in rainfall characterizing the last two centuries. We investigate these intervals using the Last Millennium Ensemble, a state-of-the-art suite of climate model simulations conducted by the National Center for Atmospheric Research with the Community Earth System Model. A primary focus is on links between Indo-Pacific ocean-atmosphere interactions and subsequent changes in the monsoon circulation over the Indian subcontinent, as well as regional moisture transport into Nepal between these periods.more » « less
- 
            Over the late Holocene, a variety of hydroclimate-sensitive proxies have identified substantial, multidecadal changes in Indian summer monsoon (ISM) precipitation, the most prominent of which is the “4.2 ka event”. This interval, dated to ~4.2-3.9 ka, is associated with severe droughts across South Asia that are linked to societal change. Given the absence of the 4.2 ka event in polar records, the 4.2 ka event is generally associated with low latitude forcings, but no clear consensus on its origins has been reached. We investigated the ISM response to the 4.2 ka event through analysis of aragonite stalagmites from Siddha cave, formed in the lower Paleozoic Dhading dolomite in the Pokhara Valley of central Nepal (28.0˚N, 84.1˚E; ~850 m.a.s.l.). The climate of this region is dominated by small monthly variations in air temperature (21±5˚C) but strong precipitation seasonality associated with the ISM: ~80% of the annual 3900 mm of rainfall occurs between June and September. High uranium and low detrital thorium abundances in these stalagmites yield precise U/Th ages that all fall within stratigraphic order. These dates reveal continuous growth from 4.30-2.26 ka, interrupted only by a hiatus from 3.27-3.10 ka. Overlap with coeval aragonite stalagmites reveals generally consistent trends in carbon and oxygen isotope ratios, suggesting that these stalagmites reflect environmental variability and not secondary (e.g., kinetic) effects. Many stalagmite-based paleomonsoon reconstructions rely on oxygen isotope ratios, which track amount effects in regional rainfall. However, our on-going rainwater collection and analysis program, as well as a previous study conducted in Kathmandu, 120 km the east of Siddha cave, reveals that amount effects in precipitation are weak in this region, particularly during the monsoon season, and thus we rely instead on carbon isotope ratios, which have been demonstrated to track site-specific effective precipitation. Siddha cave stalagmite carbon isotopes, in contrast to other South Asian proxy records, indicate that ISM rainfall increased at Siddha cave from 4.13-3.91 ka. As a further test of this result, we analyzed uranium abundances in the section spanning 4.3-3.4 ka. Uranium serves as an indicator of prior aragonite precipitation and thus of hydroclimate, and like carbon isotopes, suggests increased ISM rainfall coincident with the 4.2 ka event. This precipitation anomaly is nearly identical in timing and structure but anti-phased with stalagmites from Mawmluh cave, northeastern India. We investigated the climatic origins of this precipitation dipole using observational data from the Global Precipitation Climatology Centre (GPCC) and Hadley Center Sea Ice and Sea Surface Temperature (HadISST) products. Preliminary spatial composites suggest that large precipitation differences between Mawmluh and Siddha caves are associated with SST anomalies in the equatorial Pacific. Additionally, superposed Epoch Analysis shows relatively rapid eastern Indian Ocean cooling during the summer monsoon season coeval with large precipitation differences between these sites. Our findings lend support to a tropical Indo-Pacific origin of the 4.2 ka event.more » « less
- 
            Greenland stadials and interstadials (GS/GI) were millennial climate oscillations during the last glacial period that were originally identified in Greenland ice cores but that have been correlated with environmental change around much of the globe, including in monsoon regimes, with enhanced monsoon rainfall coincident with North Atlantic warming. Hydroclimate variability associated with GS/GI have been investigated in detail using terrestrial (primarily oxygen isotopes in stalagmites) and marine records, particularly for the Southeast Asian monsoon. However, a considerably smaller number of terrestrial records preserve these events in the Indian summer monsoon (ISM), the primary water source for ~2 billion people across South Asia. Here we present the first glacial-age speleothem stable isotope time series from Nepal, located in the ISM regime. UK-1 is a 187 mm tall aragonite stalagmite from the Pokhara Valley of central Nepal, ~150 km west of Kathmandu. The chronology of UK-1, which was established by 8 U/Th dates, all of which fall in stratigraphic order (within the errors), reveals continuous growth from 34,350-31,500 yr BP (Marine Isotope Stage 3); age uncertainties average ±84 yr. Stable isotope samples were measured every 1 mm, corresponding to a temporal resolution of 18 yr. Oxygen isotope ratios range from -5.6‰ to -7.6‰, and share the same timing and structure as Greenland (inter)stadials GS/GI 6 and 5.2 in the NGRIP record. We interpret this as reflecting an amount effect response to a strengthened ISM driven by more (less) poleward migration of the intertropical convergence zone during periods of northern hemisphere warming (cooling). This clear millennial signal in UK-1 is a somewhat unexpected result given that amount effects in oxygen isotopes in precipitation are weak (R^2=0.1) in this area today. UK-1 carbon isotope ratios range from -3‰ to -6‰ (excluding a small number of negative spikes) and exhibit variability coarsely similar to the NGRIP record, with lower (higher) values generally corresponding to GI (GS), possibly due to prior calcite precipitation in voids above the cave concomitant with changes in precipitation. Some periods of antiphasing between carbon and oxygen are also apparent and may reflect flushing of soil carbon dioxide during particularly wet phases.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    