skip to main content

Title: Rotational Components of Normal Modes Measured at a Natural Sandstone Tower (Kane Springs Canyon, Utah, U.S.A.)
Abstract Modal analysis of freestanding rock formations is crucial for evaluating their vibrational response to external stimuli, aiding accurate assessment of associated geohazards. Whereas conventional seismometers can be used to measure the translational components of normal modes, recent advances in rotational seismometer technology now allow direct measurement of the rotational components. We deployed a portable, three-component rotational seismometer for a short-duration experiment on a 36 m high sandstone tower located near Moab, Utah, in addition to conducting modal analysis using conventional seismic data and numerical modeling. Spectral analysis of rotation rate data resolved the first three natural frequencies of the tower (2.1, 3.1, and 5.9 Hz), and polarization analysis revealed the orientations of the rotation axes. Modal rotations were the strongest for the first two eigenmodes, which are mutually perpendicular, full-height bending modes with horizontal axes of rotation. The third mode is torsional with rotation about a subvertical axis. Measured natural frequencies and the orientations of displacements and rotation axes match our numerical models closely for these first three modes. In situ measurements of modal rotations are valuable at remote field sites with limited access, and contribute to an improved understanding of modal deformation, material properties, and landform response to vibration stimuli.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Seismic Record
Page Range / eLocation ID:
260 to 268
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We acquired a unique ambient vibration dataset from Castleton Tower, a 120 m high bedrock monolith located near Moab, Utah, to resolve dynamic and material properties of the landform. We identified the first two resonant modes at 0.8 and 1.0 Hz, which consist of mutually perpendicular, linearly polarized horizontal ground motion at the top of the tower. Damping ratios for these modes were low at ∼1%. We successfully reproduced field data in 3D numerical eigenfrequency simulation implementing a Young’s modulus of 7 GPa, a value ∼30% lower than measured on core samples. Our analysis confirms that modal deformation at the first resonant frequencies closely resembles that of a cantilever beam. The outcome is that with basic estimates of geometry and material properties, the resonant frequencies of other freestanding rock monoliths can be estimated a priori. Such estimates are crucial to evaluate the response of rock towers to external vibration inputs. 
    more » « less
  2. Abstract Surface-wave arrival angles are an important secondary set of observables to constrain Earth’s 3D structure. These data have also been used to refine information on the alignments of horizontal seismometer components with the geographic coordinate system. In the past, particle motion has been inspected and analyzed on single three-component seismograms, one at a time. But the advent of large, dense seismic networks has made this approach tedious and impractical. Automated toolboxes are now routinely used for datasets in which station operators cannot determine the orientation of a seismometer upon deployment, such as conventional free-fall ocean bottom seismometers. In a previous paper, we demonstrated that our automated Python-based toolbox Doran–Laske-Orientation-Python compares favorably with traditional approaches to determine instrument orientations. But an open question has been whether the technique also provides individual high-quality measurements for an internally consistent dataset to be used for structural imaging. For this feasibility study, we compared long-period Rayleigh-wave arrival angles at frequencies between 10 and 25 mHz for 10 earthquakes during the first half of 2009 that were recorded at the USArray Transportable Array—a component of the EarthScope program. After vigorous data vetting, we obtained a high-quality dataset that compares favorably with an arrival angle database compiled using our traditional interactive screen approach, particularly at frequencies 20 mHz and above. On the other hand, the presence of strong Love waves may hamper the automated measurement process as currently implemented. 
    more » « less
  3. Abstract The dynamic properties of freestanding rock towers are important inputs for seismic stability and vibration hazard assessments, however data describing the natural frequencies, mode shapes, and damping ratios of these landforms remain rare. We measured the ambient vibration of 14 sandstone and conglomerate rock towers and fins in Utah, United States, using broadband seismometers and nodal geophones. Fundamental frequencies vary between 0.8 and 15 Hz—inversely with tower height—and generally exhibit subhorizontal modal vectors oriented parallel to the minimum tower width. Modal damping ratios are low across all features, between 0.6% and 2.2%. We reproduced measured modal attributes in 3D numerical eigenfrequency models for 10 of the 14 landforms, showing that the fundamental mode of these features is full-height bending akin to a cantilever. Fin-like landforms commonly have a torsional second mode whereas tower-like features have a second full-height bending mode subperpendicular to the fundamental. In line with beam theory predictions, our data confirm that fundamental frequencies scale with the ratio of a tower’s width to its squared height. Compiled data from 18 other sites support our results, and taken together, provide guidance for estimating the modal properties of rock towers required for vibration risk assessment and paleoseismic shaking intensity analysis in different settings. 
    more » « less
  4. This work is centered on high-fidelity modeling, analysis, and rigorous experiments of vibrations and guided (Lamb) waves in a human skull in two connected tracks: (1) layered modeling of the cranial bone structure (with cortical tables and diploë) and its vibration-based elastic parameter identification (and validation); (2) transcranial leaky Lamb wave characterization experiments and radiation analyses using the identified elastic parameters in a layered semi analytical finite element framework, followed by time transient simulations that consider the inner porosity as is. In the first track, non-contact vibration experiments are conducted to extract the first handful of modal frequencies in the auditory frequency regime, along with the associated damping ratios and mode shapes, of dry cranial bone segments extracted from the parietal and frontal regions of a human skull. Numerical models of the bone segments are built with a novel image reconstruction scheme that employs microcomputed tomographic scans to build a layered bone geometry with separate homogenized domains for the cortical tables and the diploë. These numerical models and the experimental modal frequencies are then used in an iterative parameter identification scheme that yields the cortical and diploic isotropic elastic moduli of each domain, whereas the corresponding densities are estimated using the total experimental mass and layer mass ratios obtained from the scans. With the identified elastic parameters, the average error between experimental and numerical modal frequencies is less than 1.5% and the modal assurance criterion values for most modes are above 0.90. Furthermore, the extracted parameters are in the range of the results reported in the literature. In the second track, the focus is placed on the subject of leaky Lamb waves, which has received growing attention as a promising alternative to conventional ultrasound techniques for transcranial transmission, especially to access the brain periphery. Experiments are conducted on the same cranial bone segment set for leaky Lamb wave excitation and radiation characterization. The degassed skull bone segments are used in submersed experiments with an ultrasonic transducer and needle hydrophone setup for radiation pressure field scanning. Elastic parameters obtained from the first track are used in guided wave dispersion simulations, and the radiation angles are accurately predicted using the aforementioned layered model in the presence of fluid loading. The dominant radiation angles are shown to correspond to guided wave modes with low attenuation and a significant out-of-plane polarization. The experimental radiation spectra are finally compared against those obtained from time transient finite element simulations that leverage geometric models reconstructed from microcomputed tomographic scans. 
    more » « less

    Protracted episodes of 0.5–7 Hz pre-eruptive volcanic tremor (PVT) are common at active stratovolcanoes. Reliable links to processes related to magma movement consequently enable a potential to use properties of PVT as diagnostic eruptive precursors. A challenging feature of PVT is that generic spectral and amplitude properties of the signal evolve similarly, independent of widely varying volcano structures and conduit geometries on which most physical models rely. The ‘magma wagging’ model introduced in Jellinek & Bercovici (2011) and extended by Bercovici et al. (2013), Liao et al. and Liao & Bercovici (2018) makes progress because it depends on magma dynamics that are only weakly sensitive to volcano architecture: The flow of gas through a permeable foamy annulus of gas bubbles excites, modulates and maintains a wagging oscillation of a central magma column rising in an erupting conduit. ‘Magma wagging’ and resulting PVT are driven through an energy transfer from a ‘Bernoulli mode’ related to azimuthal variations in annular gas flow speeds. Consistent with observations, spectral and amplitude properties of PVT are predicted to evolve before an eruption as the width of the annulus decreases with increased gas fluxes. To confirm this critical Bernoulli-to-wagging energy transfer we use extensive experiments and restricted numerical simulations on wagging oscillations excited on analogue viscoelastic columns by annular air flows. We also explore sensitivities of the spatial and temporal characters of wagging to asymmetric annular air flows that are intractable in the existing magma wagging model and expected to occur in nature with spatial variations in annulus permeability. From high-resolution time-series of linear and orbital displacements of analogue column tops and time-series of axial deflections and accelerations of the column centre line, we characterize the excitation, evolution, and steady-state oscillations in unprecedented detail over a broad range of conditions. We show that the Bernoulli mode corresponds to the timescale for the buildup of axial elastic bending stresses in response to pressure variations related to air flows over the heights of columns. We identify three distinct wagging modes: (i) rotational (cf. Liao et al. 2018); (ii) mixed-mode and (iii) chaotic. Rotational modes are favoured for symmetric, high intensity forcing and a maximal delivery of mechanical energy to the fundamental magma wagging mode. Mixed-mode oscillations regimes are favoured for a symmetric, intermediate intensity forcing. Chaotic modes, involving the least efficient delivery of energy to the fundamental mode, occur for asymmetric forcing and where the intensity of imposed airflow is low. Numerical simulations also show that where forcing frequencies are comparable to a natural mode of free oscillation, power delivered by peripheral air flows is concentrated at the lowest frequency fundamental mode generally and spread among higher frequency natural modes where air pressure and column elastic forces are comparable. Our combined experimental and numerical results make qualitative predictions for the evolution of the character of volcanic tremor and its expression in seismic or infrasound arrays during natural events that is testable in field-based studies of PVT and syn-eruptive volcanic tremor.

    more » « less