skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rotational Components of Normal Modes Measured at a Natural Sandstone Tower (Kane Springs Canyon, Utah, U.S.A.)
Abstract Modal analysis of freestanding rock formations is crucial for evaluating their vibrational response to external stimuli, aiding accurate assessment of associated geohazards. Whereas conventional seismometers can be used to measure the translational components of normal modes, recent advances in rotational seismometer technology now allow direct measurement of the rotational components. We deployed a portable, three-component rotational seismometer for a short-duration experiment on a 36 m high sandstone tower located near Moab, Utah, in addition to conducting modal analysis using conventional seismic data and numerical modeling. Spectral analysis of rotation rate data resolved the first three natural frequencies of the tower (2.1, 3.1, and 5.9 Hz), and polarization analysis revealed the orientations of the rotation axes. Modal rotations were the strongest for the first two eigenmodes, which are mutually perpendicular, full-height bending modes with horizontal axes of rotation. The third mode is torsional with rotation about a subvertical axis. Measured natural frequencies and the orientations of displacements and rotation axes match our numerical models closely for these first three modes. In situ measurements of modal rotations are valuable at remote field sites with limited access, and contribute to an improved understanding of modal deformation, material properties, and landform response to vibration stimuli.  more » « less
Award ID(s):
2150896
PAR ID:
10410299
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Seismic Record
Volume:
2
Issue:
4
ISSN:
2694-4006
Page Range / eLocation ID:
260 to 268
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We acquired a unique ambient vibration dataset from Castleton Tower, a 120 m high bedrock monolith located near Moab, Utah, to resolve dynamic and material properties of the landform. We identified the first two resonant modes at 0.8 and 1.0 Hz, which consist of mutually perpendicular, linearly polarized horizontal ground motion at the top of the tower. Damping ratios for these modes were low at ∼1%. We successfully reproduced field data in 3D numerical eigenfrequency simulation implementing a Young’s modulus of 7 GPa, a value ∼30% lower than measured on core samples. Our analysis confirms that modal deformation at the first resonant frequencies closely resembles that of a cantilever beam. The outcome is that with basic estimates of geometry and material properties, the resonant frequencies of other freestanding rock monoliths can be estimated a priori. Such estimates are crucial to evaluate the response of rock towers to external vibration inputs. 
    more » « less
  2. Abstract Tensegrity structures have emerged as important components of various engineering structures due to their high stiffness, light weight, and deployable capability. Existing studies on dynamic analyses of tensegrity structures mainly focus on responses of their nodal points while overlook deformations of their cable and strut members. This study aims to propose a non-contact approach for experimental modal analysis of a tensegrity structure to identify its three-dimensional (3D) natural frequencies and full-field mode shapes, which include modes with deformations of its cable and strut members. A 3D scanning laser Doppler vibrometer (SLDV) is used with a mirror for extending its field of view to measure full-field vibration of a three-strut tensegrity column with free boundaries. Tensions and axial stiffnesses of cable members of the tensegrity column are determined using natural frequencies of their transverse and longitudinal modes, respectively, and used to build a numerical model of the tensegrity column for dynamic analysis and model validation purposes. Modal assurance criterion (MAC) values between experimental and numerical mode shapes are used to identify their paired modes. Natural frequencies and mode shapes of the first 15 elastic modes of the tensegrity column are identified from the experiment, which include modes of the overall structure and its cable members. These identified modes can be classified into five mode groups depending on their types. Five modes are paired between experimental and numerical results with MAC values larger than 78%. Differences between natural frequencies of paired modes of the tensegrity column are less than 15%. The non-contact 3D vibration measurement approach presented in this work can measure responses of nodal points, as well as deformations of cable and strut members, of the tensegrity column, and allows accurate estimation of its 3D full-field modal parameters. 
    more » « less
  3. Abstract Tensegrity structures become important components of various engineering structures due to their high stiffness, light weight, and deployable capability. Existing studies on their dynamic analyses mainly focus on responses of their nodal points while overlook deformations of their cable and strut members. This study proposes a non-contact approach for experimental modal analysis of a tensegrity structure to identify its three-dimensional (3D) natural frequencies and full-field mode shapes, which include modes with deformations of its cable and strut members. A 3D scanning laser Doppler vibrometer is used with a mirror for extending its field of view to measure full-field vibration of a novel three-strut metal tensegrity column with free boundaries. Tensions and axial stiffnesses of its cable members are determined using natural frequencies of their transverse and longitudinal modes, respectively, to build its theoretical model for dynamic analysis and model validation purposes. Modal assurance criterion (MAC) values between experimental and theoretical mode shapes are used to identify their paired modes. Modal parameters of the first 15 elastic modes of the tensegrity column identified from the experiment, including those of the overall structure and its cable members, can be classified into five mode groups depending on their types. Modes paired between experimental and theoretical results have MAC values larger than 78%. Differences between natural frequencies of paired modes of the tensegrity column are less than 15%. The proposed non-contact 3D vibration measurement approach allows accurate estimation of 3D full-field modal parameters of the tensegrity column. 
    more » « less
  4. Abstract The dynamic properties of freestanding rock towers are important inputs for seismic stability and vibration hazard assessments, however data describing the natural frequencies, mode shapes, and damping ratios of these landforms remain rare. We measured the ambient vibration of 14 sandstone and conglomerate rock towers and fins in Utah, United States, using broadband seismometers and nodal geophones. Fundamental frequencies vary between 0.8 and 15 Hz—inversely with tower height—and generally exhibit subhorizontal modal vectors oriented parallel to the minimum tower width. Modal damping ratios are low across all features, between 0.6% and 2.2%. We reproduced measured modal attributes in 3D numerical eigenfrequency models for 10 of the 14 landforms, showing that the fundamental mode of these features is full-height bending akin to a cantilever. Fin-like landforms commonly have a torsional second mode whereas tower-like features have a second full-height bending mode subperpendicular to the fundamental. In line with beam theory predictions, our data confirm that fundamental frequencies scale with the ratio of a tower’s width to its squared height. Compiled data from 18 other sites support our results, and taken together, provide guidance for estimating the modal properties of rock towers required for vibration risk assessment and paleoseismic shaking intensity analysis in different settings. 
    more » « less
  5. In the 1930s, Psychologists began developing Multiple-Factor Analysis to decompose multivariate data into a small number of interpretable factors without any a priori knowledge about those factors. In this form of factor analysis, the Varimax factor rotation redraws the axes through the multi-dimensional factors to make them sparse and thus make them more interpretable. Charles Spearman and many others objected to factor rotations because the factors seem to be rotationally invariant. Despite the controversy, factor rotations have remained widely popular among people analyzing data. Reversing nearly a century of statistical thinking on the topic, we show that the rotation makes the factors easier to interpret because the Varimax performs statistical inference; in particular, principal components analysis (PCA) with a Varimax rotation provides a unified spectral estimation strategy for a broad class of semi-parametric factor models, including the Stochastic Blockmodel and a natural variation of Latent Dirichlet Allocation. In addition, we show that Thurstone’s widely employed sparsity diagnostics implicitly assess a key leptokurtic condition that makes the axes statistically identifiable in these models. PCA with Varimax is fast, stable, and practical. Combined with Thurstone’s straightforward diagnostics, this vintage approach is suitable for a wide array of modern applications. 
    more » « less