skip to main content


Title: Discovery of Interstellar 2-Cyanoindene (2-C 9 H 7 CN) in GOTHAM Observations of TMC-1
Abstract We present laboratory rotational spectroscopy of five isomers of cyanoindene (2-, 4-, 5-, 6-, and 7-cyanoindene) using a cavity Fourier transform microwave spectrometer operating between 6 and 40 GHz. Based on these measurements, we report the detection of 2-cyanoindene (1H-indene-2-carbonitrile; 2- C 9 H 7 CN ) in GOTHAM line survey observations of the dark molecular cloud TMC-1 using the Green Bank Telescope at centimeter wavelengths. Using a combination of Markov Chain Monte Carlo, spectral stacking, and matched filtering techniques, we find evidence for the presence of this molecule at the 6.3 σ level. This provides the first direct observation of the ratio of a cyano-substituted polycyclic aromatic hydrocarbon to its pure hydrocarbon counterpart, in this case indene, in the same source. We discuss the possible formation chemistry of this species, including why we have only detected one of the isomers in TMC-1. We then examine the overall hydrocarbon:CN-substituted ratio across this and other simpler species, as well as compare to those ratios predicted by astrochemical models. We conclude that while astrochemical models are not yet sufficiently accurate to reproduce absolute abundances of these species, they do a good job at predicting the ratios of hydrocarbon:CN-substituted species, further solidifying -CN tagged species as excellent proxies for their fully symmetric counterparts.  more » « less
Award ID(s):
2205126
NSF-PAR ID:
10410555
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
938
Issue:
2
ISSN:
2041-8205
Page Range / eLocation ID:
L12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Recent detections of aromatic species in dark molecular clouds suggest that formation pathways may be efficient at very low temperatures and pressures, yet current astrochemical models are unable to account for their derived abundances, which can often deviate from model predictions by several orders of magnitude. The propargyl radical, a highly abundant species in the dark molecular cloud TMC-1, is an important aromatic precursor in combustion flames and possibly interstellar environments. We performed astrochemical modeling of TMC-1 using the three-phase gas-grain codeNAUTILUSand an updated chemical network, focused on refining the chemistry of the propargyl radical and related species. The abundance of the propargyl radical has been increased by half an order of magnitude compared to the previous GOTHAM network. This brings it closer in line with observations, but it remains underestimated by 2 orders of magnitude compared to its observed value. Predicted abundances for the chemically related C4H3N isomers within an order of magnitude of observed values corroborate the high efficiency of CN addition to closed-shell hydrocarbons under dark molecular cloud conditions. The results of our modeling provide insight into the chemical processes of the propargyl radical in dark molecular clouds and highlight the importance of resonance-stabilized radicals in polycyclic aromatic hydrocarbon formation.

     
    more » « less
  2. Abstract We report the detection of the lowest-energy conformer of E -1-cyano-1,3-butadiene ( E -1- C 4 H 5 CN ), a linear isomer of pyridine, using the fourth data reduction of the GBT Observations of TMC-1: Hunting for Aromatic Molecules (GOTHAM) deep spectral survey toward TMC-1 with the 100 m Green Bank Telescope. We perform velocity stacking and matched-filter analyses using Markov chain Monte Carlo simulations and find evidence for the presence of this molecule at the 5.1 σ level. We derive a total column density of 3.8 − 0.9 + 1.0 × 10 10 cm −2 , which is predominantly found toward two of the four velocity components we observe toward TMC-1. We use this molecule as a proxy for constraining the gas-phase abundance of the apolar hydrocarbon 1,3-butadiene. Based on the three-phase astrochemical modeling code NAUTILUS and an expanded chemical network, our model underestimates the abundance of cyano-1,3-butadiene by a factor of 19, with a peak column density of 2.34 × 10 10 cm −2 for 1,3-butadiene. Compared to the modeling results obtained in previous GOTHAM analyses, the abundance of 1,3-butadiene is increased by about two orders of magnitude. Despite this increase, the modeled abundances of aromatic species do not appear to change and remain underestimated by one to four orders of magnitude. Meanwhile, the abundances of the five-membered ring molecules increase proportionally with 1,3-butadiene by two orders of magnitude. We discuss the implications for bottom-up formation routes to aromatic and polycyclic aromatic molecules. 
    more » « less
  3. Context.In recent times, large organic molecules of exceptional complexity have been found in diverse regions of the interstellar medium.

    Aims.In this context, we aim to provide accurate frequencies of the ground vibrational state of two key aliphatic aldehydes,n-butanal and its branched-chain isomer, i-butanal, to enable their eventual detection in the interstellar medium. We also want to test the level of complexity that interstellar chemistry can reach in regions of star formation.

    Methods.We employ a frequency modulation millimeter-wave absorption spectrometer to measure the rotational features ofn- andi-butanal. We analyze the assigned rotational transitions of each rotamer separately using theA-reduced semirigid-rotor Hamiltonian. We use the spectral line survey ReMoCA performed with the Atacama Large Millimeter/submillimeter Array to search forn- andi-butanal toward the star-forming region Sgr B2(N). We also search for both aldehydes toward the molecular cloud G+0.693−0.027 with IRAM 30 m and Yebes 40 m observations. The observational results are compared with computational results from a recent gas-grain astrochemical model.

    Results.Several thousand rotational transitions belonging to the lowest-energy conformers of two distinct linear and branched isomers have been assigned in the laboratory spectra up to 325 GHz. A precise set of the relevant rotational spectroscopic constants has been determined for each structure as a first step toward identifying both molecules in the interstellar medium. We report non-detections ofn-and i-butanal toward both sources, Sgr B2(N1S) and G+0.693-0.027. We find thatn- andi-butanal are at least 2-6 and 6-18 times less abundant than acetaldehyde toward Sgr B2(N1S), respectively, and thatn-butanal is at least 63 times less abundant than acetaldehyde toward G+0.693−0.027. While propanal is not detected toward Sgr B2(N1S) either, with an abundance at least 5–11 lower than that of acetaldehyde, propanal is found to be 7 times less abundant than acetaldehyde in G+0.693−0.027. Comparison with astrochemical models indicates good agreement between observed and simulated abundances (where available). Grain-surface chemistry appears sufficient to reproduce aldehyde ratios in G+0.693−0.027; gas-phase production may play a more active role in Sgr B2(N1S). Model estimates for the larger aldehydes indicate that the observed upper limits may be close to the underlying values.

    Conclusions.Our astronomical results indicate that the family of interstellar aldehydes in the Galactic center region is characterized by a drop of one order of magnitude in abundance at each incrementation in the level of molecular complexity.

     
    more » « less
  4. Abstract We report a systematic study of all known methyl carbon chains toward TMC-1 using the second data release of the GOTHAM survey, as well as a search for larger species. Using Markov Chain Monte Carlo simulations and spectral line stacking of over 30 rotational transitions, we report statistically significant emission from methylcyanotriacetylene (CH 3 C 7 N) at a confidence level of 4.6 σ , and use it to derive a column density of ∼10 11 cm −2 . We also searched for the related species, methyltetraacetylene (CH 3 C 8 H), and place upper limits on the column density of this molecule. By carrying out the above statistical analyses for all other previously detected methyl-terminated carbon chains that have emission lines in our survey, we assess the abundances, excitation conditions, and formation chemistry of methylpolyynes (CH 3 C 2 n H) and methylcyanopolyynes (CH 3 C 2 n -1 N) in TMC-1, and compare those with predictions from a chemical model. Based on our observed trends in column density and relative populations of the A and E nuclear spin isomers, we find that the methylpolyyne and methylcyanopolyyne families exhibit stark differences from one another, pointing to separate interstellar formation pathways, which is confirmed through gas–grain chemical modeling with nautilus . 
    more » « less
  5. Context. The detection of a branched alkyl molecule in the high-mass star forming protocluster Sagittarius (Sgr) B2(N) permitted by the advent of the Atacama Large Millimeter/submillimeter Array (ALMA) revealed a new dimension of interstellar chemistry. Astrochemical simulations subsequently predicted that beyond a certain degree of molecular complexity, branched molecules could even dominate over their straight-chain isomers. Aims. More generally, we aim to probe further the presence in the interstellar medium of complex organic molecules with the capacity to exhibit both a normal and iso form, via the attachment of a functional group to either a primary or secondary carbon atom. Methods. We used the imaging spectral line survey ReMoCA performed with ALMA at high angular resolution and the results of a recent spectroscopic study of propanol to search for the iso and normal isomers of this molecule in the hot molecular core Sgr B2(N2). We analyzed the interferometric spectra under the assumption of local thermodynamical equilibrium. We expanded the network of the astrochemical model MAGICKAL to explore the formation routes of propanol and put the observational results in a broader astrochemical context. Results. We report the first interstellar detection of iso-propanol, ¿-C 3 H 7 OH, toward a position of Sgr B2(N2) that shows narrow linewidths. We also report the first secure detection of the normal isomer of propanol, n-C 3 H 7 OH, in a hot core. Iso-propanol is found to be nearly as abundant as normal-propanol, with an abundance ratio of 0.6 which is similar to the ratio of 0.4 that we obtained previously for iso- and normal-propyl cyanide in Sgr B2(N2) at lower angular resolution with our previous ALMA survey, EMoCA. The observational results are in good agreement with the outcomes of our astrochemical models, which indicate that the OH-radical addition to propylene in dust-grain ice mantles, driven by water photodissociation, can produce appropriate quantities of normal- and iso-propanol. The normal-to-iso ratio in Sgr B2(N2) may be a direct inheritance of the branching ratio of this reaction process. Conclusions. The detection of normal- and iso-propanol and their ratio indicate that the modest preference for the normal form of propyl cyanide determined previously may be a more general feature among similarly sized interstellar molecules. Detecting other pairs of interstellar organic molecules with a functional group attached either to a primary or secondary carbon may help in pinning down the processes that dominate in setting their normal-to-iso ratios. Butanol and its isomers would be the next obvious candidates in the alcohol family, but their detection in hot cores will be challenging. 
    more » « less