skip to main content


Title: Study on the Quantum Efficiency Enhancement in AlInN Nanowire Light-Emitting Diodes Grown by Molecular Beam Epitaxy
We report on the demonstration of electron blocking layer free AlInN nanowire light-emitting diodes (LEDs) operating in the 280–365 nm wavelength region. The molecular beam epitaxial grown AlInN nanowires have a relatively high internal quantum efficiency of > 52%. Moreover, we show that the light extraction efficiency of the nanowires could reach ~ 63% for hexagonal photonic crystal nanowire structures which is significantly higher compared to that of the random nanowire arrays. This study provides significant insights into the design and fabrication of a new type of high-performance AlInN nanowire ultraviolet light-emitters.  more » « less
Award ID(s):
1944312
NSF-PAR ID:
10410578
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2022 Compound Semiconductor Week
Page Range / eLocation ID:
1 to 2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We report the demonstration of the first axial AlInN ultraviolet core-shell nanowire light-emitting diodes with highly stable emission in the ultraviolet wavelength range. During epitaxial growth of the AlInN layer, an AlInN shell is spontaneously formed, resulting in reduced nonradiative recombination on the nanowire surface. The AlInN nanowires exhibit a high internal quantum efficiency of ~52% at room temperature for emission at 295 nm. The peak emission wavelength can be varied from 290 nm to 355 nm by changing the growth conditions. Moreover, significantly strong transverse magnetic (TM) polarized emission is recorded, which is ~4 times stronger than the transverse electric (TE) polarized light at 295 nm. This study provides an alternative approach for the fabrication of new types of high-performance ultraviolet light emitters. 
    more » « less
  2. In this paper, AlInN nanowire ultraviolet light-emitting diodes (LEDs) with emission at ∼299 nm have been successfully demonstrated. We have further studied the light extraction properties of these nanowire LEDs using photonic crystal structures with square and hexagonal lattices of nanowires. The light extraction efficiency (LEE) of the periodic nanowire LED arrays was found to be significantly increased as compared to random nanowire LEDs. The LEEs reach ∼ 56%, and ∼ 63% for the square and hexagonal photonic crystal-based nanowire structures, respectively. Moreover, highly transverse-magnetic polarized emission was observed with dominant vertical light emission for the AlInN nanowire ultraviolet LEDs.

     
    more » « less
  3. We report on the illustration of the first electron blocking layer (EBL) free AlInN nanowire light-emitting diodes (LEDs) operating in the deep ultraviolet (DUV) wavelength region (sub-250 nm). We have systematically analyzed the results using APSYS software and compared with simulated AlGaN nanowire DUV LEDs. From the simulation results, significant efficiency droop was observed in AlGaN based devices, attributed to the significant electron leakage. However, compared to AlGaN nanowire DUV LEDs at similar emission wavelength, the proposed single quantum well (SQW) AlInN based light-emitters offer higher internal quantum efficiency without droop up to current density of 1500 A/cm2and high output optical power. Moreover, we find that transverse magnetic polarized emission is ∼ 5 orders stronger than transverse electric polarized emission at 238 nm wavelength. Further research shows that the performance of the AlInN DUV nanowire LEDs decreases with multiple QWs in the active region due to the presence of the non-uniform carrier distribution in the active region. This study provides important insights on the design of new type of high performance AlInN nanowire DUV LEDs, by replacing currently used AlGaN semiconductors.

     
    more » « less
  4. In this paper, we report on the enhanced light extraction efficiency (LEE) of AlInN nanowire ultraviolet light-emitting diodes (LEDs) at an emission wavelength of 283 nm using the surface passivation approach and hexagonal photonic crystal structures. Several dielectric materials including SiO 2 , Si 3 N 4 , HfO 2 , AlN, and BN, have been investigated as the surface passivation layer for the AlInN nanowire LEDs. The LEDs using these dielectric materials show significantly improved LEE compared to that of the unpassivated ultraviolet nanowire LEDs. With a 35nm Si 3 N 4 as surface passivation, the AlInN LED could achieve a LEE of ~ 42.6%, while the unpassivated LED could only have an average LEE of ~ 25.2%. Moreover, the LEE of the AlInN nanowire LEDs could be further increased using hexagonal photonic crystal structures. The periodically arranged nanowire LED arrays could reach up to 63.4% which is almost two times higher compared to that of the random nanowire LEDs. Additionally, the AlInN nanowire ultraviolet LEDs exhibit highly transverse-magnetic polarized emission. 
    more » « less
  5. Abstract

    Deep ultraviolet (DUV) AlGaN light-emitting diodes (LEDs) are promising alternatives for production of DUV light, offering many advantages over mercury arc lamps. In this work, AlGaN nanowires with an inverse taper profile were demonstrated through a wet etching process, enabling removal of the nanowires from the growth substrate in a novel peeling process to form flexible devices. AlGaN nanowires with taper angles of ∼22° were obtained following a 70 min etch in AZ400K. Nanowire taper angle was studied as a function of etch time and nanowire top diameter. Nanowires with inverse taper were then embedded in a flexible polymer layer and removed from their growth substrate, which could enable development of high-efficiency flexible micro-LEDs. Released nanowires embedded within the polymer liftoff layer exhibit strain relaxation induced redshift due to reduction in piezoelectric polarization electric field intensity. The inverse taper structure was found to promote enhanced light extraction from the nanowire. The demonstrated flexible DUV emitters with inverse taper are shown to improve the device efficiency and allow for realization of flexible emitters through a novel fabrication process for the first time.

     
    more » « less