skip to main content


Title: Time-marching based quantum solvers for time-dependent linear differential equations
The time-marching strategy, which propagates the solution from one time step to the next, is a natural strategy for solving time-dependent differential equations on classical computers, as well as for solving the Hamiltonian simulation problem on quantum computers. For more general homogeneous linear differential equations d d t | ψ ( t ) ⟩ = A ( t ) | ψ ( t ) ⟩ , | ψ ( 0 ) ⟩ = | ψ 0 ⟩ , a time-marching based quantum solver can suffer from exponentially vanishing success probability with respect to the number of time steps and is thus considered impractical. We solve this problem by repeatedly invoking a technique called the uniform singular value amplification, and the overall success probability can be lower bounded by a quantity that is independent of the number of time steps. The success probability can be further improved using a compression gadget lemma. This provides a path of designing quantum differential equation solvers that is alternative to those based on quantum linear systems algorithms (QLSA). We demonstrate the performance of the time-marching strategy with a high-order integrator based on the truncated Dyson series. The complexity of the algorithm depends linearly on the amplification ratio, which quantifies the deviation from a unitary dynamics. We prove that the linear dependence on the amplification ratio attains the query complexity lower bound and thus cannot be improved in the worst case. This algorithm also surpasses existing QLSA based solvers in three aspects: (1) A ( t ) does not need to be diagonalizable. (2) A ( t ) can be non-smooth, and is only of bounded variation. (3) It can use fewer queries to the initial state | ψ 0 ⟩ . Finally, we demonstrate the time-marching strategy with a first-order truncated Magnus series, which simplifies the implementation compared to high-order truncated Dyson series approach, while retaining the aforementioned benefits. Our analysis also raises some open questions concerning the differences between time-marching and QLSA based methods for solving differential equations.  more » « less
Award ID(s):
2208416
NSF-PAR ID:
10410591
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Quantum
Volume:
7
ISSN:
2521-327X
Page Range / eLocation ID:
955
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The difficulty of simulating quantum dynamics depends on the norm of the Hamiltonian. When the Hamiltonian varies with time, the simulation complexity should only depend on this quantity instantaneously. We develop quantum simulation algorithms that exploit this intuition. For sparse Hamiltonian simulation, the gate complexity scales with the L 1 norm ∫ 0 t d τ ‖ H ( τ ) ‖ max , whereas the best previous results scale with t max τ ∈ [ 0 , t ] ‖ H ( τ ) ‖ max . We also show analogous results for Hamiltonians that are linear combinations of unitaries. Our approaches thus provide an improvement over previous simulation algorithms that can be substantial when the Hamiltonian varies significantly. We introduce two new techniques: a classical sampler of time-dependent Hamiltonians and a rescaling principle for the Schrödinger equation. The rescaled Dyson-series algorithm is nearly optimal with respect to all parameters of interest, whereas the sampling-based approach is easier to realize for near-term simulation. These algorithms could potentially be applied to semi-classical simulations of scattering processes in quantum chemistry. 
    more » « less
  2. Quantum computers can produce a quantum encoding of the solution of a system of differential equations exponentially faster than a classical algorithm can produce an explicit description. However, while high-precision quantum algorithms for linear ordinary differential equations are well established, the best previous quantum algorithms for linear partial differential equations (PDEs) have complexity p o l y ( 1 / ϵ ) , where ϵ is the error tolerance. By developing quantum algorithms based on adaptive-order finite difference methods and spectral methods, we improve the complexity of quantum algorithms for linear PDEs to be p o l y ( d , log ⁡ ( 1 / ϵ ) ) , where d is the spatial dimension. Our algorithms apply high-precision quantum linear system algorithms to systems whose condition numbers and approximation errors we bound. We develop a finite difference algorithm for the Poisson equation and a spectral algorithm for more general second-order elliptic equations. 
    more » « less
  3. We consider the numerical analysis of the inchworm Monte Carlo method, which is proposed recently to tackle the numerical sign problem for open quantum systems. We focus on the growth of the numerical error with respect to the simulation time, for which the inchworm Monte Carlo method shows a flatter curve than the direct application of Monte Carlo method to the classical Dyson series. To better understand the underlying mechanism of the inchworm Monte Carlo method, we distinguish two types of exponential error growth, which are known as the numerical sign problem and the error amplification. The former is due to the fast growth of variance in the stochastic method, which can be observed from the Dyson series, and the latter comes from the evolution of the numerical solution. Our analysis demonstrates that the technique of partial resummation can be considered as a tool to balance these two types of error, and the inchworm Monte Carlo method is a successful case where the numerical sign problem is effectively suppressed by such means. We first demonstrate our idea in the context of ordinary differential equations, and then provide complete analysis for the inchworm Monte Carlo method. Several numerical experiments are carried out to verify our theoretical results. 
    more » « less
  4. The Discontinuous Petrov-Galerkin (DPG) method and the exponential integrators are two well establishednumerical methods for solving Partial Differential Equations (PDEs) and stiff systems of Ordinary Differential Equations (ODEs), respectively. In this work, we apply the DPG method in the time variable for linear parabolic problems and we calculate the optimal test functions analytically. We show that the DPG method in time is equivalent to exponential integrators for the trace variables, which are decoupled from the interior variables. In addition, the DPG optimal test functions allow us to compute the approximated solutions in the time element interiors. This DPG method in time allows to construct a posteriori error estimations in order to perform adaptivity. We generalize this novel DPG-based time-marching scheme to general first order linear systems of ODEs. We show the performance of the proposed method for 1D and 2D +time linear parabolic PDEs after discretizing in space by the finite element method. 
    more » « less
  5. Numerically solving partial differential equations (PDEs) remains a compelling application of supercomputing resources. The next generation of computing resources - exhibiting increased parallelism and deep memory hierarchies - provide an opportunity to rethink how to solve PDEs, especially time dependent PDEs. Here, we consider time as an additional dimension and simultaneously solve for the unknown in large blocks of time (i.e. in 4D space-time), instead of the standard approach of sequential time-stepping. We discretize the 4D space-time domain using a mesh-free kD tree construction that enables good parallel performance as well as on-the-fly construction of adaptive 4D meshes. To best use the 4D space-time mesh adaptivity, we invoke concepts from PDE analysis to establish rigorous a posteriori error estimates for a general class of PDEs. We solve canonical linear as well as non-linear PDEs (heat diffusion, advection-diffusion, and Allen-Cahn) in space-time, and illustrate the following advantages: (a) sustained scaling behavior across a larger processor count compared to sequential time-stepping approaches, (b) the ability to capture "localized" behavior in space and time using the adaptive space-time mesh, and (c) removal of any time-stepping constraints like the Courant-Friedrichs-Lewy (CFL) condition, as well as the ability to utilize spatially varying time-steps. We believe that the algorithmic and mathematical developments along with efficient deployment on modern architectures shown in this work constitute an important step towards improving the scalability of PDE solvers on the next generation of supercomputers. 
    more » « less