skip to main content


Title: Transcriptional Coactivators: Driving Force of Plant Immunity
Salicylic acid (SA) is a plant defense signal that mediates local and systemic immune responses against pathogen invasion. However, the underlying mechanism of SA-mediated defense is very complex due to the involvement of various positive and negative regulators to fine-tune its signaling in diverse pathosystems. Upon pathogen infections, elevated level of SA promotes massive transcriptional reprogramming in which Non-expresser of PR genes 1 (NPR1) acts as a central hub and transcriptional coactivator in defense responses. Recent findings show that Enhanced Disease Susceptibility 1 (EDS1) also functions as a transcriptional coactivator and stimulates the expression of PR1 in the presence of NPR1 and SA. Furthermore, EDS1 stabilizes NPR1 protein level, while NPR1 sustains EDS1 expression during pathogenic infection. The interaction of NPR1 and EDS1 coactivators initiates transcriptional reprogramming by recruiting cyclin-dependent kinase 8 in the Mediator complex to control immune responses. In this review, we highlight the recent breakthroughs that considerably advance our understanding on how transcriptional coactivators interact with their functional partners to trigger distinct pathways to facilitate immune responses, and how SA accumulation induces dynamic changes in NPR1 structure for transcriptional reprogramming. In addition, the functions of different Mediator subunits in SA-mediated plant immunity are also discussed in light of recent discoveries. Taken together, the available evidence suggests that transcriptional coactivators are essential and potent regulators of plant defense pathways and play crucial roles in coordinating plant immune responses during plant–pathogen interactions.  more » « less
Award ID(s):
1758994
PAR ID:
10410678
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Plant Science
Volume:
13
ISSN:
1664-462X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract As a plant hormone, salicylic acid (SA) plays essential roles in plant defense against biotrophic and hemibiotrophic pathogens. Significant progress has been made in understanding the SA biosynthesis pathways and SA-mediated defense signaling networks in the past two decades. Plant defense responses involve rapid and massive transcriptional reprogramming upon the recognition of pathogens. Plant transcription factors and their co-regulators are critical players in establishing a transcription regulatory network and boosting plant immunity. A multitude of transcription factors and epigenetic regulators have been discovered, and their roles in SA-mediated defense responses have been reported. However, our understanding of plant transcriptional networks is still limited. As such, novel genomic tools and bioinformatic techniques will be necessary if we are to fully understand the mechanisms behind plant immunity. Here, we discuss current knowledge, provide an update on the SA biosynthesis pathway, and describe the transcriptional and epigenetic regulation of SA-mediated plant immune responses. 
    more » « less
  2. The master regulator of salicylic acid (SA)-mediated plant defense, NPR1 (NONEXPRESSER OF PR GENES 1) and its paralogs NPR3 and NPR4, act as SA receptors. After the perception of a pathogen, plant cells produce SA in the chloroplast. In the presence of SA, NPR1 protein is reduced from oligomers to monomers, and translocated into the nucleus. There, NPR1 binds to TGA, TCP, and WRKY transcription factors to induce expression of plant defense genes. A list of compounds structurally similar to SA was generated using ChemMine Tools and its Clustering Toolbox. Several of these analogs can induce SA-mediated defense and inhibit growth of Pseudomonas syringae in Arabidopsis. These analogs, when sprayed on Arabidopsis, can induce the accumulation of the master regulator of plant defense NPR1. In a yeast two-hybrid system, these analogs can strengthen the interactions among NPR proteins. We demonstrated that these analogs can induce the expression of the defense marker gene PR1. Furthermore, we hypothesized that these SA analogs could be potent tools against the citrus greening pathogen Candidatus liberibacter spp. In fact, our results suggest that the SA analogs we tested using Arabidopsis may also be effective for inducing a defense response in citrus. Several SA analogs consistently strengthened the interactions between citrus NPR1 and NPR3 proteins in a yeast two-hybrid system. In future assays, we plan to test whether these analogs avoid degradation by SA hydroxylases from plant pathogens. In future assays, we plan to test whether these analogs avoid degradation by SA hydroxylases from plant pathogens. 
    more » « less
  3. Abstract

    Calcium (Ca2+) signalling regulates salicylic acid (SA)‐mediated immune response through calmodulin‐meditated transcriptional activators, AtSRs/CAMTAs, but its mechanism is not fully understood. Here, we report an AtSR1/CAMTA3‐mediated regulatory mechanism involving the expression of the SA receptor, NPR1. Results indicate that the transcriptional expression ofNPR1was regulated by AtSR1 binding to a CGCG box in theNPR1promotor. Theatsr1mutant exhibited resistance to the virulent strain ofPseudomonas syringaepv.tomato(Pst), however, was susceptible to an avirulentPststrain carryingavrRpt2, due to the failure of the induction of hypersensitive responses. These resistant/susceptible phenotypes in theatsr1mutant were reversed in thenpr1mutant background, suggesting that AtSR1 regulates NPR1 as a downstream target during plant immune response. The virulentPststrain triggered a transient elevation in intracellular Ca2+concentration, whereas the avirulentPststrain triggered a prolonged change. The distinct Ca2+signatures were decoded into the regulation of NPR1 expression through AtSR1's IQ motif binding with Ca2+‐free‐CaM2, while AtSR1's calmodulin‐binding domain with Ca2+‐bound‐CaM2. These observations reveal a role for AtSR1 as a Ca2+‐mediated transcription regulator in controlling the NPR1‐mediated plant immune response.

     
    more » « less
  4. TIR domains are NAD-degrading enzymes that function during immune signaling in prokaryotes, plants, and animals. In plants, most TIR domains are incorporated into intracellular immune receptors termed TNLs. In Arabidopsis, TIR-derived small molecules bind and activate EDS1 heterodimers, which in turn activate RNLs, a class of cation channel–forming immune receptors. RNL activation drives cytoplasmic Ca 2+ influx, transcriptional reprogramming, pathogen resistance, and host cell death. We screened for mutants that suppress an RNL activation mimic allele and identified a TNL, SADR1. Despite being required for the function of an autoactivated RNL, SADR1 is not required for defense signaling triggered by other tested TNLs. SADR1 is required for defense signaling initiated by some transmembrane pattern recognition receptors and contributes to the unbridled spread of cell death in lesion simulating disease 1 . Together with RNLs, SADR1 regulates defense gene expression at infection site borders, likely in a non-cell autonomous manner. RNL mutants that cannot sustain this pattern of gene expression are unable to prevent disease spread beyond localized infection sites, suggesting that this pattern corresponds to a pathogen containment mechanism. SADR1 potentiates RNL-driven immune signaling not only through the activation of EDS1 but also partially independently of EDS1. We studied EDS1-independent TIR function using nicotinamide, an NADase inhibitor. Nicotinamide decreased defense induction from transmembrane pattern recognition receptors and decreased calcium influx, pathogen growth restriction, and host cell death following intracellular immune receptor activation. We demonstrate that TIR domains can potentiate calcium influx and defense and are thus broadly required for Arabidopsis immunity. 
    more » « less
  5. Stomatal immunity is the primary gate of the plant pathogen defense system. Non-expressor of Pathogenesis Related 1 (NPR1) is the salicylic acid (SA) receptor, which is critical for stomatal defense. SA induces stomatal closure, but the specific role of NPR1 in guard cells and its contribution to systemic acquired resistance (SAR) remain largely unknown. In this study, we compared the response to pathogen attack in wild-type Arabidopsis and the npr1-1 knockout mutant in terms of stomatal movement and proteomic changes. We found that NPR1 does not regulate stomatal density, but the npr1-1 mutant failed to close stomata when under pathogen attack, resulting in more pathogens entering the leaves. Moreover, the ROS levels in the npr1-1 mutant were higher than in the wild type, and several proteins involved in carbon fixation, oxidative phosphorylation, glycolysis, and glutathione metabolism were differentially changed in abundance. Our findings suggest that mobile SAR signals alter stomatal immune response possibly by initiating ROS burst, and the npr1-1 mutant has an alternative priming effect through translational regulation. 
    more » « less