- Editors:
- Miller, Eva
- Award ID(s):
- 1845979
- Publication Date:
- NSF-PAR ID:
- 10410692
- Journal Name:
- ASEE annual conference exposition
- ISSN:
- 2153-5965
- Sponsoring Org:
- National Science Foundation
More Like this
-
Miller, E. (Ed.)Abstract Women professionals are underrepresented in the architecture, engineering, and construction (AEC) industry. As part of a larger and longitudinal nationwide study that constructs grounded theories to explain professional identity development (PID) processes in undergraduate AEC women, the purpose is to examine the lived experiences of first-year AEC women. Using purposive sampling, 40 AEC women from five institutions completed surveys with open-ended questions about salient first year experiences. Also, resumes and academic transcripts were obtained. Adopting the grounded theory approach and constant comparative analysis, data was analyzed using the NVivo Qualitative Analysis software for coding, categorization, and theme development. Data analysis reveals a critical question on the minds of first-year AEC women: Is this AEC profession a good fit for me? Utilizing four categories and twelve subcategories, an emerging theory, Sparking AEC-PID Through Agency and Networks, highlights the role of interactions between self and structures in forming AEC-PID and influencing women persistence in undergraduate AEC programs. This theory proposes important predictors of AEC-PID and AEC persistence in women. It captures cognitive, emotional, physical, social, and academic processes that spark AEC-PID in women. Positive interactions between self and AEC program environments strengthen AEC-PID because of improvement in AEC knowledge, views, mindsets,more »
-
There have been many initiatives to improve the experiences of marginalized engineering students in order to increase their desire to pursue the field of engineering. However, despite these efforts, workforce numbers indicate lingering disparities. Representation in the science and engineering workforce is low with women comprising only 16% of those in science and engineering occupations in 2019, and underrepresented minorities (e.g., Black, Hispanic, and American Indian/Alaskan Native) collectively representing only approximately 20% (National Center for Science and Engineering Statistics [NCSES], 2022). Additionally, engineering has historically held cultural values that can exclude marginalized populations. Cech (2013) argues that engineering has supported a meritocratic ideology in which intelligence is something that you are born with rather than something you can gain. Engineering, she argues, is riddled with meritocratic regimens that include such common practices as grading on a curve and “weeding” out students in courses.Farrell et al. (2021) discuss how engineering culture is characterized by elitism through practices of epistemological dominance (devaluing other ways of knowing), majorism (placing higher value on STEM over the liberal arts), and technical social dualism (the belief that issues of diversity, equity, and inclusion should not be part of engineering). These ideologies can substantially affect the persistencemore »
-
There is an urgent need for young people to prepare for and pursue engineering careers. Engineering occupations comprise 20% of the science, technology, engineering, and math (STEM) jobs in the U.S. (Bureau of Labor Statistics, 2017). The average wage for STEM occupations is nearly double that of non-STEM occupations, with engineers commanding some of the highest salaries in STEM (Bureau of Labor Statistics, 2017). Moreover, engineering occupations are expected to be some of the fastest growing occupations in the U.S. over the next 10 years (Occupational Outlook Handbook, 2018); yet, there are current and projected shortages of workers in the engineering workforce so that many engineering jobs will go unfilled (Bureau of Labor Statistics, 2015) Native Americans are highly underrepresented in engineering (NSF, 2017). They comprise approximately 2% of the U.S. population (U.S. Census Bureau, 2013), but only 0.3% of engineers (Sandia National Laboratories, 2016). Thus, they are not positioned to attain a high-demand, high-growth, highly rewarding engineering job, nor to provide engineering expertise to meet the needs of their own communities or society at large. The purpose of this study was to examine factors that encourage or discourage Native American college students’ entry into engineering. Using Social Cognitive Careermore »
-
Abstract In response to the growing computational intensity of the healthcare industry, biomedical engineering (BME) undergraduate education is placing increased emphasis on computation. The presence of substantial gender disparities in many computationally intensive disciplines suggests that the adoption of computational instruction approaches that lack intentionality may exacerbate gender disparities. Educational research suggests that the development of an engineering and computational identity is one factor that can support students’ decisions to enter and persist in an engineering major. Discipline-based identity research is used as a lens to understand retention and persistence of students in engineering. Our specific purpose is to apply discipline-based identity research to define and explore the computational identities of undergraduate engineering students who engage in computational environments. This work will inform future studies regarding retention and persistence of students who engage in computational courses. Twenty-eight undergraduate engineering students (20 women, 8 men) from three engineering majors (biomedical engineering, agricultural engineering, and biological engineering) participated in semi-structured interviews. The students discussed their experiences in a computationally-intensive thermodynamics course offered jointly by the Biomedical Engineering and Agricultural & Biological Engineering departments. The transcribed interviews were analyzed through thematic coding. The gender stereotypes associated with computer programming also come part andmore »
-
There is little research or understanding of curricular differences between two- and four-year programs, career development of engineering technology (ET) students, and professional preparation for ET early career professionals [1]. Yet, ET credentials (including certificates, two-, and four-year degrees) represent over half of all engineering credentials awarded in the U.S [2]. ET professionals are important hands-on members of engineering teams who have specialized knowledge of components and engineering systems. This research study focuses on how career orientations affect engineering formation of ET students educated at two-year colleges. The theoretical framework guiding this study is Social Cognitive Career Theory (SCCT). SCCT is a theory which situates attitudes, interests, and experiences and links self-efficacy beliefs, outcome expectations, and personal goals to educational and career decisions and outcomes [3]. Student knowledge of attitudes toward and motivation to pursue STEM and engineering education can impact academic performance and indicate future career interest and participation in the STEM workforce [4]. This knowledge may be measured through career orientations or career anchors. A career anchor is a combination of self-concept characteristics which includes talents, skills, abilities, motives, needs, attitudes, and values. Career anchors can develop over time and aid in shaping personal and career identity [6].more »