skip to main content


Title: Faculty Perceptions of STEM Student and Faculty Experiences During the COVID-19 Pandemic: A Qualitative Study (WIP).
The recent outbreak of COVID-19, considered as being a lethal pandemic by the World Health Organization, has caused profound changes in the educational system within the U.S and across the world. Overnight, universities and their educators had to switch to a largely online teaching format, which challenged their capacity to deliver learning content effectively to STEM students. Students were forced to adapt to a new learning environment in the midst of challenges in their own lives due to the COVID-19 effects on society and professional expectations. The main purpose of this paper is to investigate faculty perceptions of STEM student experiences during COVID-19. Through a qualitative methodology consisting of one-hour zoom interviews administered to 32 STEM faculty members from six U.S. Universities nationwide, faculty narratives regarding student and faculty experiences during COVID-19 were obtained. The qualitative research approach involved identifying common themes across faculty experiences and views in these narratives. Some of the categories of emerging themes associated with faculty perceptions on student and faculty experiences included: student struggles and challenges, student cheating and the online environment, faculty and student adaptability, faculty and student needs and support, and university resources and support. Best practices to facilitate online teaching and learning employed by STEM faculty were also discussed. Key findings revealed that students and faculty had both positive and negative experiences during COVID-19. Additionally, there was a greater need for consistent policies to improve the online student learning experiences. Recommendations to improve STEM student experiences include increased institutional resources and collaboration between faculty and the university administrators to provide a coherent online learning environment. Preliminary findings also provide insights to enhance institutional adaptability and resilience for improving STEM student experiences during future pandemics. Future research should continue to explore institutional adaptation strategies that enhance STEM student learning during pandemics.  more » « less
Award ID(s):
2028811 1845979
PAR ID:
10410700
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Miller, Eva
Date Published:
Journal Name:
ASEE annual conference exposition
ISSN:
2153-5965
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Miller, Eva (Ed.)
    COVID-19 is a continuing global pandemic causing significant changes and modifications in the ways we teach and learn here in the U.S as well as around the world. Most universities, faculty members, and students modified their learning system by incorporating significant online or mixed learning methods/modes to reduce in person contact time and to reduce the spread of the virus. Universities, faculty and students were challenged as they adapted to new learning modules, strategies and approaches. This adaption started in the Spring of 2020 and has continued to date through the Spring of 2022. The main objective of this project was to investigate faculty perception of STEM student experiences and behavior during the Fall 2020 semester as compared to the Spring 2020 semester as COVID-19 impacts were prolonged. Through a qualitative methodology of zoom interviews administered to 32 STEM faculty members across six U.S. Universities nationwide and a theming scheme, the opinion and narratives of these faculty members were garnered in a round one and round two sets of interviews, in Summer 2020 and then in Spring 2021 (following the semesters of interest). Some of the main new themes that were detected in faculty interviews during the Fall 2020 semester and which reflect faculty perceptions are represented as follow: COVID-19 impact on student and faculty motivation, COVID-19 impacts on labs and experiential learning, COVID-19 impact on mental health, COVID-19 impact on STEM students' involvement in STEM experiential learning opportunities and research. Other previous themes detected and which are revisited to analyze major differences with those themes obtained during the Spring 2020 are presented and not limited to: extra efforts from professors, student cheating behavior, cheating factors and prevention, student behavioral and performance changes, student struggles and challenges, University response and efforts to the COVID-19 pandemic. We explored the differences in these themes between the semesters to look at noticed adaptations and modifications. Presented will also be recommendations to improve student and faculty motivation along with strategies to enhance the student learning experience during the COVID-19 pandemic. We report on common findings and suggest future strategies. 
    more » « less
  2. Miller, Eva (Ed.)
    Professor-student interactions influence student learning experiences and performance. The COVID pandemic transformed STEM learning environments across U.S. institutions; however, its impact on STEM professor-student interactions and STEM student learning experiences are yet to be understood. The purpose of this nationwide inductive research study is to examine the impact of COVID-19 on professor-student interactions, undergraduate STEM student learning, and STEM student performance. To achieve this, a qualitative method is adopted and purposive sampling is utilized to enroll 63 STEM students from six U.S institutions. Data is collected through one-hour ZOOM interviews, giving students the opportunity to narrate their STEM learning experiences and performance during the COVID-19 pandemic. The data is analyzed using the NVIVO qualitative analysis software for coding, categorizing, memo-ing, and constant comparative analysis. Results reveal emergent codes on the STEM professor-student interactions to include professor leniency, caring attitude, availability, communication, instruction style, teaching resources, technology literacy, camera on/off requirements, live/recorded sessions, time zone, and student workload. Limited positive impacts on student learning include improved familiarity with alternate STEM learning resources and development of virtual learning soft skills. Negative learning experiences are extensive and coded as: poor comprehension, keeping up, overdrive, isolation, lowered motivation, schedule conflicts, and anxiety. Consequently, students made adaptation decisions coded as: alternate learning sources, refined scheduling, community support, preferring teaching assistants, working out, reporting professors, procrastination, and tuning out. While proactive students and students with prior virtual learning experiences improved or maintained their grades, many students opted for the pass/fail grade or complete withdrawal due to poor STEM learning and performance. Findings indicate that while STEM professors were adjusting to modified teaching environments, many STEM students were developing a sense of independence, self-study, and peer reliance to improve their own STEM understanding and performance with minimal reliance on STEM professors. Lessons learned and best practices for professor-student interactions and student learning are recommended for potential replication in STEM communities for improved adaptability and resiliency during future pandemics. Future research will focus on measuring the effect of best practices on professor-student interactions, student learning experiences, and performance. 
    more » « less
  3. null (Ed.)
    This paper is based on a series of semi-structured, qualitative interviews that were conducted with students, by an undergraduate student and lead author of this paper, that focused on their experiences with educational technologies and online teaching pedagogy in the wake of the COVID-19 pandemic. As U.S. educators scrambled to adapt to online course delivery modes as a result of the first wave of the pandemic in the spring 2020 semester, those in the educational technology and online learning community saw the potential of this movement to vastly accelerate the implementation of online systems in higher education. A shift that may have taken 20 years to accomplish was implemented in two waves, first with the immediate forced shift to online learning in March 2020; and second, a less immediate shift to hybrid and online instruction designed to accommodate the different geographic variation in COVID-19 intensity, along with varied political and institutional ecologies surrounding online versus in-person instruction for the 2020-2021 academic year. With all of the rapid changes that were occurring during the spring of 2020, we wanted to investigate how students experienced and perceived faculty use of technology during this particular moment in time. This study documents this transition through the eyes of undergraduate students, and demonstrates the varied ways in which faculty navigated the transition to online learning. According to our interviewees, some faculty were thoughtful and competent and provided a supportive environment that paid attention to a students’ capacity for online learning, rather than maintaining traditional instructional practices. Others relied on practices from in-person instruction that were familiar, but appeared to be nervous in the new online teaching environment. Then there were those who seemed occupied by other concerns, where a focus on effective undergraduate teaching remained limited to begin with, and their approach to online instruction was driven by convenience. Our qualitative data clearly reveals that the ways in which faculty conducted their online courses directly impacted student learning experiences. In this study, we set out to document both the faculty instructional strategies in a hybrid/online environment and student accounts of those choices and their resulting experiences. While we continue to analyze this unique data set on this moment of transition in engineering education, we hope that this paper will also lead to policy recommendations regarding faculty adaptations to online instruction in general. We include some initial thoughts and recommendations below. 
    more » « less
  4. COVID-19 has been one of the most significant disruptors of higher education in modern history. Higher education institutions rapidly transitioned to Emergency Remote Teaching (ERT) in mid-to-late March of 2020. The extent of COVID-19’s impact on teaching and learning, and the resulting challenges facilitating ERT during this time, likely varied by faculty, institutional, and geographical characteristics. In this study, we identified challenges in teaching and learning during the initial transition to ERT at Predominantly Undergraduate Institutions (PUIs) in the Midwest, United States. We conducted in-depth interviews with 14 faculty teaching at Midwestern PUIs to explore their lived experiences. We describe the most overarching challenges related to faculty teaching through four emergent themes: pedagogical changes, work-life balance, face-to-face interactions, and physical and mental health. Five themes emerged that we used to describe the most overarching challenges related to students and their learning: learning patterns, technology access, additional responsibilities, learning community, and mental health. Based upon the identified challenges, we provide broad recommendations that can be used to foster a more successful transition to ERT in unforeseen regional or global crises in the future. 
    more » « less
  5. null (Ed.)
    Purpose The purpose of this case study is to explore the perceptions of science, technology, engineering and mathematics (STEM) faculty members toward mentoring undergraduates. Design/methodology/approach Within the context of a student scholarship and faculty development project, funded by the National Science Foundation (NSF), STEM faculty members were interviewed at a small teaching-focused university in South Texas, United States. This research study utilized a qualitative case study approach based on semi-structured interviews with nine Mathematics and Computer Science faculty members. Transcripts were coded thematically, beginning with open coding and continuing with repeated rounds of comparison leading to the identification of four themes. Findings Four themes were identified in the data: describing settings where mentoring occurs, identifying the tasks of mentoring, developing skills for mentoring others and inhabiting the identity of a mentor. These findings suggest that increasing faculty engagement and effectiveness in mentoring STEM students may be a matter of broadening the definition of mentoring and helping faculty members develop the identity of a mentor. Practical implications In an effort to promote retention of students, specifically within STEM fields, many initiatives highlight the importance of faculty mentoring for undergraduate students. This research suggests that faculty members' perceptions of the role and structure of a mentoring relationship will shape this relationship and have an impact on student persistence and success. Originality/value While most studies of faculty–student mentoring focus on the experiences of students, this study explored faculty members' perceptions of that relationship. 
    more » « less