Transposable elements (TEs) are sequences that replicate and move throughout genomes, and they can be silenced through methylation of cytosines at CpG dinucleotides. TE abundance contributes to genome size, but TE silencing variation across genomes of different sizes remains underexplored. Salamanders include most of the largest C-values – 9 to 120 Gb. We measured CpG methylation levels in salamanders with genomes ranging from 2N = ∼58 Gb to 4N = ∼116 Gb. We compared these levels to results from endo- and ectothermic vertebrates with more typical genomes. Salamander methylation levels are approximately 90%, higher than all endotherms. However, salamander methylation does not differ from other ectotherms, despite an approximately 100-fold difference in nuclear DNA content. Because methylation affects the nucleotide compositional landscape through 5-methylcytosine deamination to thymine, we quantified salamander CpG dinucleotide levels and compared them to other vertebrates. Salamanders and other ectotherms have comparable CpG levels, and ectotherm levels are higher than endotherms. These data show no shift in global methylation at the base of salamanders, despite a dramatic increase in TE load and genome size. This result is reconcilable with previous studies that considered endothermy and ectothermy, which may be more important drivers of methylation in vertebrates than genome size.
more »
« less
Metamorphosis Imposes Variable Constraints on Genome Expansion through Effects on Development
Synopsis Genome size varies ∼100,000-fold across eukaryotes and has long been hypothesized to be influenced by metamorphosis in animals. Transposable element accumulation has been identified as a major driver of increase, but the nature of constraints limiting the size of genomes has remained unclear, even as traits such as cell size and rate of development co-vary strongly with genome size. Salamanders, which possess diverse metamorphic and non-metamorphic life histories, join the lungfish in having the largest vertebrate genomes—3 to 40 times that of humans—as well as the largest range of variation in genome size. We tested 13 biologically-inspired hypotheses exploring how the form of metamorphosis imposes varying constraints on genome expansion in a broadly representative phylogeny containing 118 species of salamanders. We show that metamorphosis during which animals undergo the most extensive and synchronous remodeling imposes the most severe constraint against genome expansion, with the severity of constraint decreasing with reduced extent and synchronicity of remodeling. More generally, our work demonstrates the potential for broader interpretation of phylogenetic comparative analysis in exploring the balance of multiple evolutionary pressures shaping phenotypic evolution.
more »
« less
- Award ID(s):
- 1911585
- PAR ID:
- 10410777
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Integrative Organismal Biology
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2517-4843
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Amphibian metamorphosis represents a dramatic example of post-embryonic development. In the anuran Xenopus laevis frog, this process involves extensive changes to larval tissues, structures, and physiology to produce its adult form. As a long-standing model to study tissue remodeling, both amphibian metamorphosis and mammalian development are under the control of thyroid hormone. Successful remodeling though, also requires precise temporospatial regulation of immune activation. Yet there is much to learn about the immune components linked to metamorphosis. In turn, granulocytes are a class of innate immune cells recently touted for their participation in processes beyond classical immune defenses, including in pathological and non-pathological tissue remodeling. In this manuscript, we explore the roles of granulocytes in perhaps the most conspicuous anuran metamorphic event: tadpole tail reabsorption. We characterize granulocyte infiltration into the tail as metamorphosis progresses. Although some granulocyte subpopulations exist in both Xenopus and mammals, our previous work has identified additional Xenopus-specific populations. Thus, here we further explored subpopulation dynamics through distinct stages of natural metamorphosis, their likely roles during this process, and their relationship with thyroid hormone. As endocrine disruptors continue to threaten species across the animal kingdom, the work described here offers much-needed insight into immune contributions to endocrine-linked development.more » « less
-
Abstract Human‐induced climate change, land use changes, and urbanization are predicted to dramatically impact landscape hydrology, which can have devastating impacts on aquatic organisms. For amphibians that rely on aquatic environments to breed and develop, it is essential to understand how the larval environment impacts development, condition, and performance later in life. Two important predicted impacts of climate change, urbanization, and land use changes are reduced hydroperiod and variable larval density. Here, we explored how larval density and hydroperiod affect development, morphology, physiology, and immune defenses at metamorphosis and 35 days post‐metamorphosis in the frogRana pipiens. We found that high‐density larval conditions had a large negative impact on development and morphology, which resulted in longer larval periods, reduced likelihood of metamorphosis, smaller size at metamorphosis, shorter femur to body length ratio, and reduced microbiome species evenness compared with animals that developed in low‐density conditions. However, animals from the high‐density treatment experienced compensatory growth post‐metamorphosis, demonstrating accelerated growth in body size and relative femur length compared with animals from the low‐density treatments, despite not “catching‐up” in size. We also observed an increase in relative gut length and relative liver size in animals that had developed in the high‐density treatment than those in the low‐density treatment, as well as higher bacterial killing ability, and greater jump distances relative to their leg length across different temperatures. Finally, metabolic rate was higher overall but especially at higher test temperatures for animals that developed under high‐density conditions, indicating that these animals may expend more energy in response to acute temperature changes. While the effects of climate change have direct negative effects on larval development and metamorphosis, animals can increase growth rate post‐metamorphosis; however, that compensatory growth might come at a cost and reduce their ability to cope with further environmental change such as increased temperatures.more » « less
-
Abstract Transposable elements (TEs) are a major determinant of eukaryotic genome size. The collective properties of a genomic TE community reveal the history of TE/host evolutionary dynamics and impact present-day host structure and function, from genome to organism levels. In rare cases, TE community/genome size has greatly expanded in animals, associated with increased cell size and changes to anatomy and physiology. Here, we characterize the TE landscape of the genome and transcriptome in an amphibian with a giant genome — the caecilianIchthyophis bannanicus, which we show has a genome size of 12.2 Gb. Amphibians are an important model system because the clade includes independent cases of genomic gigantism. The I. bannanicus genome differs compositionally from other giant amphibian genomes, but shares a low rate of ectopic recombination-mediated deletion. We examine TE activity using expression and divergence plots; TEs account for 15% of somatic transcription, and most superfamilies appear active. We quantify TE diversity in the caecilian, as well as other vertebrates with a range of genome sizes, using diversity indices commonly applied in community ecology. We synthesize previous models that integrate TE abundance, diversity, and activity, and test whether the caecilian meets model predictions for genomes with high TE abundance. We propose thorough, consistent characterization of TEs to strengthen future comparative analyses. Such analyses will ultimately be required to reveal whether the divergent TE assemblages found across convergent gigantic genomes reflect fundamental shared features of TE/host genome evolutionary dynamics.more » « less
-
Abstract Amphibians undergo a variety of post‐embryonic transitions (PETr) that are partly governed by thyroid hormone (TH). Transformation into a terrestrial form follows an aquatic larval stage (biphasic) or precedes hatching (direct development). Some salamanders maintain larval characteristics and an aquatic lifestyle into adulthood (paedomorphosis), which obscures the conclusion of their larval period. Paedomorphic axolotls exhibit elevated TH during early development that is concomitant with transcriptional reprogramming and limb emergence. A recent perspective suggested this cryptic TH‐based PETr is uncoupled from metamorphosis in paedomorphs and concludes the larval period. This led to their question:“Are paedomorphs actual larvae?”. To clarify, paedomorphs are only considered larval in form, even though they possess some actual larval characteristics. However, we strongly agree that events during larval development inform amphibian life cycle evolution. We build upon their perspective by considering the evolution of limb emergence and metamorphosis. Limbless hatchling larval salamanders are generally associated with ponds, while limbed larvae are common to streams and preceded the evolution of direct development. Permian amphibians had limbed larvae, so their PETr was likely uncoupled from metamorphosis, equivalent to most extant biphasic and paedomorphic salamanders. Coupling of these events was likely derived in frogs and direct developing salamanders.more » « less
An official website of the United States government
