skip to main content


Title: A Review of the Role of the Atlantic Meridional Overturning Circulation in Atlantic Multidecadal Variability and Associated Climate Impacts
Abstract

By synthesizing recent studies employing a wide range of approaches (modern observations, paleo reconstructions, and climate model simulations), this paper provides a comprehensive review of the linkage between multidecadal Atlantic Meridional Overturning Circulation (AMOC) variability and Atlantic Multidecadal Variability (AMV) and associated climate impacts. There is strong observational and modeling evidence that multidecadal AMOC variability is a crucial driver of the observed AMV and associated climate impacts and an important source of enhanced decadal predictability and prediction skill. The AMOC‐AMV linkage is consistent with observed key elements of AMV. Furthermore, this synthesis also points to a leading role of the AMOC in a range of AMV‐related climate phenomena having enormous societal and economic implications, for example, Intertropical Convergence Zone shifts; Sahel and Indian monsoons; Atlantic hurricanes; El Niño–Southern Oscillation; Pacific Decadal Variability; North Atlantic Oscillation; climate over Europe, North America, and Asia; Arctic sea ice and surface air temperature; and hemispheric‐scale surface temperature. Paleoclimate evidence indicates that a similar linkage between multidecadal AMOC variability and AMV and many associated climate impacts may also have existed in the preindustrial era, that AMV has enhanced multidecadal power significantly above a red noise background, and that AMV is not primarily driven by external forcing. The role of the AMOC in AMV and associated climate impacts has been underestimated in most state‐of‐the‐art climate models, posing significant challenges but also great opportunities for substantial future improvements in understanding and predicting AMV and associated climate impacts.

 
more » « less
Award ID(s):
1805029
NSF-PAR ID:
10410790
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Reviews of Geophysics
Volume:
57
Issue:
2
ISSN:
8755-1209
Page Range / eLocation ID:
p. 316-375
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The sea surface temperature (SST) signature of Atlantic multidecadal variability (AMV) is a key driver of climate variability in surrounding regions. Low-frequency Atlantic meridional overturning circulation (AMOC) variability is often invoked as a key driving mechanism of AMV-related SST anomalies. However, the origins of both AMV and multidecadal AMOC variability remain areas of active research and debate. Here, using coupled ensemble experiments designed to isolate the climate response to buoyancy forcing associated with the North Atlantic Oscillation in the Labrador Sea, we show that ocean dynamical changes are the essential drivers of AMV and related climate impacts. Atmospheric teleconnections also play an important role in rendering the full AMV pattern by transmitting the ocean-driven subpolar SST signal into the rest of the basin, including the tropical North Atlantic. As such, the atmosphere response to the tropical AMV in our experiments is limited to a relatively small area in the Atlantic sector in summertime, suggesting that it could be overestimated in widely adopted protocols for AMV pacemaker experiments.

     
    more » « less
  2. Abstract

    Atlantic multidecadal variability (AMV) impacts temperature, precipitation, and extreme events on both sides of the Atlantic Ocean basin. Previous studies with climate models have suggested that when external radiative forcing is held constant, the large-scale ocean and atmosphere circulation are associated with sea surface temperature (SST) anomalies that have similar characteristics to the observed AMV. However, there is an active debate as to whether these internal fluctuations driven by coupled atmosphere–ocean variability remain influential to the AMV on multidecadal time scales in our modern, anthropogenically forced climate. Here we provide evidence from multiple large ensembles of climate models, paleoreconstructions, and instrumental observations of a growing role for external forcing in the AMV. Prior to 1850, external forcing, primarily from volcanoes, explains about one-third of AMV variance. Between 1850 and 1950, there is a transitional period, where external forcing explains one-half of AMV variance, but volcanic forcing only accounts for about 10% of that. After 1950, external forcing explains three-quarters of AMV variance. That is, the role for external forcing in the AMV grows as the variations in external forcing grow, even if the forcing is from different sources. When forcing is relatively stable, as in earlier modeling studies, a higher percentage of AMV variations are internally generated.

     
    more » « less
  3. Recent research has linked the climate variability associated with ocean-atmosphere teleconnections to impacts rippling throughout environmental, economic, and social systems. This research reviews recent literature through 2021 in which we identify linkages among the major modes of climate variability, in the form of ocean-atmosphere teleconnections, and the impacts to temperature and precipitation of the South-Central United States (SCUSA), consisting of Arkansas, Louisiana, New Mexico, Oklahoma, and Texas. The SCUSA is an important areal focus for this analysis because it straddles the ecotone between humid and arid climates in the United States and has a growing population, diverse ecosystems, robust agricultural and other economic sectors including the potential for substantial wind and solar energy generation. Whereas a need exists to understand atmospheric variability due to the cascading impacts through ecological and social systems, our understanding is complicated by the positioning of the SCUSA between subtropical and extratropical circulation features and the influence of the Pacific and Atlantic Oceans, and the adjacent Gulf of Mexico. The Southern Oscillation (SO), Pacific-North American (PNA) pattern, North Atlantic Oscillation (NAO) and the related Arctic Oscillation (AO), Atlantic Multidecadal Oscillation/Atlantic Multidecadal Variability (AMO/AMV), and Pacific Decadal Oscillation/Pacific Decadal Variability (PDO/PDV) have been shown to be important modulators of temperature and precipitation variables at the monthly, seasonal, and interannual scales, and the intraseasonal Madden-Julian Oscillation (MJO) in the SCUSA. By reviewing these teleconnection impacts in the region alongside updated seasonal correlation maps, this research provides more accessible and comparable results for interdisciplinary use on climate impacts beyond the atmospheric-environmental sciences. 
    more » « less
  4. Abstract

    By analysing a 113–year (1900–2012) observational dataset, it is shown that the interdecadal fluctuation of the summer precipitation over Northeast Asia differs from that in central East Asia during the 20th century, and has experienced three interdecadal shifts in the 1920s, mid‐1960s and late 1990s. That fluctuation coincides well with the multidecadal fluctuation of the sea surface temperature in the North Atlantic, known as the Atlantic Multidecadal Oscillation (AMO). The AMO affects Northeast Asia via a circumglobal teleconnection pattern extending from the North Atlantic to North America. Corresponding with the positive phase of this teleconnection pattern, a tripolar pattern emerges in the Asian–North Pacific sector, with anomalous low pressure over Northeast Asia and high pressure over Lake Baikal and the mid‐latitude western North Pacific. These results suggest that the positive phase of the AMO favours the occurrence of cold vortex over Northeast Asia and anomalous highs over Lake Baikal and the mid‐latitude western North Pacific in summer, which enhances the East Asian summer monsoon and southward intrusion of high‐latitude cold air, and eventually increases the summer precipitation in Northeast Asia. Furthermore, initialized decadal prediction simulations using the CCSM4 model reproduce well the observed variations of the AMO and its associated atmospheric teleconnection but with slightly shifted geographic locations. The simulated anomalous Northeast Asia cold vortex and strong East Asian summer monsoon, lead to above‐normal summer precipitation over Northeast Asia. The modelling results confirm that the multidecadal variability in the North Atlantic can cause the observed interdecadal variations of Northeast Asia summer precipitation. Our results suggest that to understand and predict interdecadal climate change over Northeast Asia, it is important to consider the key role of the AMO.

     
    more » « less
  5. Abstract

    This study presents multiple lines of evidence from observations and model simulations that support a key role for ocean dynamics, rather than external forcings, in Atlantic multidecadal variability (AMV) during the last half century. Observed AMV fingerprints considered here include the low‐frequency spatiotemporal evolution of sea surface temperature, surface heat fluxes, and deep ocean hydrography. While largely absent in the forced response of a large ensemble historical simulations (LENSs), these fingerprints are clearly discernible in a long control simulation where the variability is purely internal. Further evidence derives from initialized decadal prediction simulations, which exhibit much higher skill at predicting the observed AMV of the past 50 years than LENS. The high correlation between the observed AMV and the externally forced version derived from LENS, which has been invoked as evidence for externally driven AMV, is shown to be largely an artifact of concurrent warming since the 1990s.

     
    more » « less