Abstract Ferrimagnetic iron garnets enable magnetic and magneto‐optical functionality in silicon photonics and electronics. However, garnets require high‐temperature processing for crystallization which can degrade other devices on the wafer. Here bismuth‐substituted yttrium and terbium iron garnet (Bi‐YIG and Bi‐TbIG) films are demonstrated with good magneto‐optical performance and perpendicular magnetic anisotropy (PMA) crystallized by a microheater built on a Si chip or by rapid thermal annealing. The Bi‐TbIG film crystallizes on Si at 873 K without a seed layer and exhibits good magneto‐optical properties with Faraday rotation (FR) of −1700 deg cm−1. The Bi‐YIG film also crystallizes on Si and fused SiO2at 873 K without a seed layer. Rapidly cooled films exhibit PMA due to the tensile stress caused by the thermal expansion mismatch with the substrates, increasing the magnetoelastic anisotropy by 4 kJ m−3versus slow‐cooled films. Annealing in the air for 15 s using the microheater yields fully crystallized Bi‐TbIG on the Si chip.
more »
« less
Sputtered L 1 0 ‐FePd and its Synthetic Antiferromagnet on Si/SiO 2 Wafers for Scalable Spintronics
Abstract As a promising alternative to the mainstream CoFeB/MgO system with interfacial perpendicular magnetic anisotropy (PMA),L10‐FePd and its synthetic antiferromagnet (SAF) structure with large crystalline PMA can support spintronic devices with sufficient thermal stability at sub‐5 nm sizes. However, the compatibility requirement of preparingL10‐FePd thin films on Si/SiO2wafers is still unmet. In this paper, high‐qualityL10‐FePd and its SAF on Si/SiO2wafers are prepared by coating the amorphous SiO2surface with an MgO(001) seed layer. The preparedL10‐FePd single layer and SAF stack are highly (001)‐textured, showing strong PMA, low damping, and sizeable interlayer exchange coupling, respectively. Systematic characterizations, including advanced X‐ray diffraction measurement and atomic resolution‐scanning transmission electron microscopy, are conducted to explain the outstanding performance ofL10‐FePd layers. A fully‐epitaxial growth that starts from MgO seed layer, induces the (001) texture ofL10‐FePd, and extends through the SAF spacer is observed. This study makes the vision of scalable spintronics more practical.
more »
« less
- Award ID(s):
- 2226579
- PAR ID:
- 10410792
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 33
- Issue:
- 18
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The vast high entropy alloy (HEA) composition space is promising for discovery of new material phases with unique properties. This study explores the potential to achieve rare‐earth‐free high magnetic anisotropy materials in single‐phase HEA thin films. Thin films of FeCoNiMnCu sputtered on thermally oxidized Si/SiO2substrates at room temperature are magnetically soft, with a coercivity on the order of 10 Oe. After post‐deposition rapid thermal annealing (RTA), the films exhibit a single face‐centered‐cubic phase, with an almost 40‐fold increase in coercivity. Inclusion of 50 at.% Pt in the film leads to ordering of a singleL10high entropy intermetallic phase after RTA, along with high magnetic anisotropy and 3 orders of magnitude coercivity increase. These results demonstrate a promising HEA approach to achieve high magnetic anisotropy materials using RTA.more » « less
-
Abstract 2D van der Waals (vdW) magnets open landmark horizons in the development of innovative spintronic device architectures. However, their fabrication with large scale poses challenges due to high synthesis temperatures (>500 °C) and difficulties in integrating them with standard complementary metal‐oxide semiconductor (CMOS) technology on amorphous substrates such as silicon oxide (SiO2) and silicon nitride (SiNx). Here, a seeded growth technique for crystallizing CrTe2films on amorphous SiNx/Si and SiO2/Si substrates with a low thermal budget is presented. This fabrication process optimizes large‐scale, granular atomic layers on amorphous substrates, yielding a substantial coercivity of 11.5 kilo‐oersted, attributed to weak intergranular exchange coupling. Field‐driven Néel‐type stripe domain dynamics explain the amplified coercivity. Moreover, the granular CrTe2devices on Si wafers display significantly enhanced magnetoresistance, more than doubling that of single‐crystalline counterparts. Current‐assisted magnetization switching, enabled by a substantial spin–orbit torque with a large spin Hall angle (85) and spin Hall conductivity (1.02 × 107ℏ/2e Ω⁻¹ m⁻¹), is also demonstrated. These observations underscore the proficiency in manipulating crystallinity within integrated 2D magnetic films on Si wafers, paving the way for large‐scale batch manufacturing of practical magnetoelectronic and spintronic devices, heralding a new era of technological innovation.more » « less
-
Abstract Si‐based anodes with a stiff diamond structure usually suffer from sluggish lithiation/delithiation reaction due to low Li‐ion and electronic conductivity. Here, a novel ternary compound ZnSi2P3with a cation‐disordered sphalerite structure, prepared by a facile mechanochemical method, is reported, demonstrating faster Li‐ion and electron transport and greater tolerance to volume change during cycling than the existing Si‐based anodes. A composite electrode consisting of ZnSi2P3and carbon achieves a high initial Coulombic efficiency (92%) and excellent rate capability (950 mAh g−1at 10 A g−1) while maintaining superior cycling stability (1955 mAh g−1after 500 cycles at 300 mA g−1), surpassing the performance of most Si‐ and P‐based anodes ever reported. The remarkable electrochemical performance is attributed to the sphalerite structure that allows fast ion and electron transport and the reversible Li‐storage mechanism involving intercalation and conversion reactions. Moreover, the cation‐disordered sphalerite structure is flexible to ionic substitutions, allowing extension to a family of Zn(Cu)Si2+xP3solid solution anodes (x= 0, 2, 5, 10) with large capacity, high initial Coulombic efficiency, and tunable working potentials, representing attractive anode candidates for next‐generation, high‐performance, and low‐cost Li‐ion batteries.more » « less
-
Abstract High‐temperature, high‐velocity water vapor (steam‐jet) exposures were conducted on Y2O3, Y2SiO5, Y2Si2O7, and SiO2for 60 hours at 1400°C. Volatility of Y2O3was not observed. Phase‐pure Y2SiO5exhibited SiO2loss forming Y2O3and porosity. A mixed porous and dense Y2SiO5layer formed on the surface of Y2Si2O7due to SiO2depletion. The mechanisms and kinetics of the reaction between SiO2and H2O(g) to form Si(OH)4(g) from Y2SiO5, Y2Si2O7, and SiO2are discussed.more » « less
An official website of the United States government
