The influence of climate feedbacks on regional hydrological changes under warming is poorly understood. Here, a moist energy balance model (MEBM) with a Hadley Cell parameterization is used to isolate the influence of climate feedbacks on changes in zonal‐mean precipitation‐minus‐evaporation (
- NSF-PAR ID:
- 10410923
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 36
- Issue:
- 10
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- 3499 to 3522
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract P −E ) under greenhouse‐gas forcing. It is shown that cloud feedbacks act to narrow bands of tropicalP −E and increaseP −E in the deep tropics. The surface‐albedo feedback shifts the location of maximum tropicalP −E and increasesP −E in the polar regions. The intermodel spread in theP −E changes associated with feedbacks arises mainly from cloud feedbacks, with the lapse‐rate and surface‐albedo feedbacks playing important roles in the polar regions. TheP −E change associated with cloud feedback locking in the MEBM is similar to that of a climate model with inactive cloud feedbacks. This work highlights the unique role that climate feedbacks play in causing deviations from the “wet‐gets‐wetter, dry‐gets‐drier” paradigm. -
null (Ed.)Abstract Atmospheric rivers (ARs), narrow intense moisture transport, account for much of the poleward moisture transport in midlatitudes. While studies have characterized AR features and the associated hydrological impacts in a warming climate in observations and comprehensive climate models, the fundamental dynamics for changes in AR statistics (e.g., frequency, length, width) are not well understood. Here we investigate AR response to global warming with a combination of idealized and comprehensive climate models. To that end, we developed an idealized atmospheric GCM with Earth-like global circulation and hydrological cycle, in which water vapor and clouds are modeled as passive tracers with simple cloud microphysics and precipitation processes. Despite the simplicity of model physics, it reasonably reproduces observed dynamical structures for individual ARs, statistical characteristics of ARs, and spatial distributions of AR climatology. Under climate warming, the idealized model produces robust AR changes similar to CESM large ensemble simulations under RCP8.5, including AR size expansion, intensified landfall moisture transport, and an increased AR frequency, corroborating previously reported AR changes under global warming by climate models. In addition, the latitude of AR frequency maximum shifts poleward with climate warming. Further analysis suggests the thermodynamic effect (i.e., an increase in water vapor) dominates the AR statistics and frequency changes while both the dynamic and thermodynamic effects contribute to the AR poleward shift. These results demonstrate that AR changes in a warming climate can be understood as passive water vapor and cloud tracers regulated by large-scale atmospheric circulation, whereas convection and latent heat feedback are of secondary importance.more » « less
-
Abstract Changes in midlatitude clouds as a result of shifts in general circulation patterns are widely thought to be a potential source of radiative feedbacks onto the climate system. Previous work has suggested that two general circulation shifts anticipated to occur in a warming climate, poleward shifts in the midlatitude jet streams and a poleward expansion of the Hadley circulation, are associated with differing effects on midlatitude clouds. This study examines two dynamical cloud‐controlling factors, mid‐tropospheric vertical velocity, and the estimated inversion strength (EIS) of the marine boundary layer temperature inversion, to explain why poleward shifts in the Southern Hemisphere midlatitude jet and Hadley cell edge have varying shortwave cloud‐radiative responses at midlatitudes. Changes in vertical velocity and EIS occur further equatorward for poleward shifts in the Hadley cell edge than they do for poleward shifts of the midlatitude jet. Because the sensitivity of shortwave cloud radiative effects (SWCRE) to variations in vertical velocity and EIS is a function of latitude, the SWCRE anomalies associated with jet and Hadley cell shifts differ. The dynamical changes associated with a poleward jet shift occur further poleward in a regime where the sensitivities of SWCRE to changes in vertical velocity and EIS balance, leading to a near‐net zero change in SWCRE in midlatitudes with a poleward jet shift. Conversely, the dynamical changes associated with Hadley cell expansion occur further equatorward at a latitude where the sensitivity of SWCRE is more strongly associated with changes in mid‐tropospheric vertical velocity, leading to a net shortwave cloud radiative warming effect in midlatitudes.
-
Precipitation changes in a warming climate have been examined with a focus on either mean precipitation or precipitation extremes, but changes in the full probability distribution of precipitation have not been well studied. This paper develops a methodology for the quantile-conditional column moisture budget of the atmosphere for the full probability distribution of precipitation. Analysis is performed on idealized aquaplanet model simulations under 3-K uniform SST warming across different horizontal resolutions. Because the covariance of specific humidity and horizontal mass convergence is much reduced when conditioned onto a given precipitation percentile range, their conditional averages yield a clear separation between the moisture (thermodynamic) and circulation (dynamic) effects of vertical moisture transport on precipitation. The thermodynamic response to idealized climate warming can be understood as a generalized “wet get wetter” mechanism, in which the heaviest precipitation of the probability distribution is enhanced most from increased gross moisture stratification, at a rate controlled by the change in lower-tropospheric moisture rather than column moisture. The dynamic effect, in contrast, can be interpreted by shifts in large-scale atmospheric circulations such as the Hadley cell circulation or midlatitude storm tracks. Furthermore, horizontal moisture advection, albeit of secondary role, is important for regional precipitation change. Although similar mechanisms are at play for changes in both mean precipitation and precipitation extremes, the thermodynamic contributions of moisture transport to increases in high percentiles of precipitation tend to be more widespread across a wide range of latitudes than increases in the mean, especially in the subtropics.
-
Abstract Tropical areas with mean upward motion—and as such the zonal-mean intertropical convergence zone (ITCZ)—are projected to contract under global warming. To understand this process, a simple model based on dry static energy and moisture equations is introduced for zonally symmetric overturning driven by sea surface temperature (SST). Processes governing ascent area fraction and zonal mean precipitation are examined for insight into Atmospheric Model Intercomparison Project (AMIP) simulations. Bulk parameters governing radiative feedbacks and moist static energy transport in the simple model are estimated from the AMIP ensemble. Uniform warming in the simple model produces ascent area contraction and precipitation intensification—similar to observations and climate models. Contributing effects include stronger water vapor radiative feedbacks, weaker cloud-radiative feedbacks, stronger convection-circulation feedbacks, and greater poleward moisture export. The simple model identifies parameters consequential for the inter-AMIP-model spread; an ensemble generated by perturbing parameters governing shortwave water vapor feedbacks and gross moist stability changes under warming tracks inter-AMIP-model variations with a correlation coefficient ∼0.46. The simple model also predicts the multimodel mean changes in tropical ascent area and precipitation with reasonable accuracy. Furthermore, the simple model reproduces relationships among ascent area precipitation, ascent strength, and ascent area fraction observed in AMIP models. A substantial portion of the inter-AMIP-model spread is traced to the spread in how moist static energy and vertical velocity profiles change under warming, which in turn impact the gross moist stability in deep convective regions—highlighting the need for observational constraints on these quantities. Significance Statement A large rainband straddles Earth’s tropics. Most, but not all, climate models predict that this rainband will shrink under global warming; a few models predict an expansion of the rainband. To mitigate some of this uncertainty among climate models, we build a simpler model that only contains the essential physics of rainband narrowing. We find several interconnected processes that are important. For climate models, the most important process is the efficiency with which clouds move heat and humidity out of rainy regions. This efficiency varies among climate models and appears to be a primary reason for why climate models do not agree on the rate of rainband narrowing.more » « less