skip to main content


Title: Speleothem organic biomarkers trace last millennium fire history at near-annual resolution in northwestern Australia
Recent developments in speleothem science are showing their potential for paleofire reconstruction through a variety of inorganic and organic proxies including trace metals (1) and the pyrogenic organic compound levoglucosan (2). Previous work by Argiriadis et al. (2019) presented a method for the analysis of trace polycyclic aromatic hydrocarbons (PAHs) and n -alkanes in stalagmites (3). These compounds reflect biogeochemical processes occurring at the land surface, in the soil, and in the cave. PAHs are primarily related to combustion of biomass while n-alkanes, with their potential for vegetation reconstruction (4), provide information on fuel availability and composition, as well as fire activity. These organic molecules are carried downward by infiltrating water and incorporated into speleothems (5), thereby creating the potential to serve as novel paleofire archives. Using this approach, we developed a high-resolution stalagmite record of paleofire activity from cave KNI-51 in tropical northwestern Australia. This site is well suited for high resolution paleofire reconstruction as bushfire activity in this tropical savanna is some of the highest on the continent, the cave is shallow and overlain by extremely thin soils, and the stalagmites are fast-growing (1-2 mm yr-1) and precisely dated. We analyzed three stalagmites which grew continuously in different time intervals through the last millennium - KNI-51-F (CE ~1100-1620), KNI-51-G (CE ~1320-1640), and KNI-51-11 (CE ~1750-2009). Samples were drilled continuously at 1-3 mm resolution from stalagmite slabs, processed in a stainless-steel cleanroom to prevent contamination. Despite a difference in resolution between stalagmites KNI-51-F and -G, peaks in the target compounds show good replication in the overlapping time interval of the two stalagmites, and PAH abundances in a portion of stalagmite KNI-51-11 that grew from CE 2000-2009 are well correlated with satellite-mapped fires occurring proximally to the cave. Our results suggest an increase in the frequency of low intensity fire in the 20th century relative to much of the previous millennium. The timing of this shift is broadly coincident with the arrival of European pastoralists in the late 19th century and the subsequent displacement of Aboriginal peoples from the land. Aboriginal peoples had previously utilized “fire stick farming”, a method of prescribed, low intensity burning, that was an important influence of ecology, biomass, and fire. Prior to the late 1800s, the period with the most frequent low intensity fire activity was the 13th century, the wettest interval of the entire record. Peak high intensity fire activity occurred during the 12th century. Controlled burn and irrigation experiments capable of examining the transmission of pyrogenic compounds from the land surface to cave dripwater represent the next step in this analysis. Given that karst is present in many fire-prone environments, and that stalagmites can be precisely dated and grow continuously for millennia, the potential utility of a stalagmite-based paleofire proxy is high. (1) L.K. McDonough et al., Geochim. Cosmochim. Acta. 325, 258–277 (2022). (2) J. Homann et al., Nat. Commun., 13:7175 (2022). (3) E. Argiriadis et al., Anal. Chem. 91, 7007–7011 (2019). (4) R.T. Bush, F. A. McInerney, Geochim. Cosmochim. Acta. 117, 161–179 (2013). (5) Y. Sun et al., Chemosphere. 230, 616–627 (2019).  more » « less
Award ID(s):
2147186
NSF-PAR ID:
10410924
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
European Geosciences Union
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Polycyclic aromatic hydrocarbons (PAHs) are produced by the burning of biomass, with molecular weights reflecting combustion conditions. After being formed, PAHs are transported downward through soil and bedrock by infiltrating rainwater (Perrette et al., 2013), and in karst areas can become incorporated into stalagmites as they crystallize from dripwater in underlying caves (Perrette et al., 2008; Denniston et al., 2018). Thus, when stalagmite growth is high, infiltration times short, and fluid mixing minimized, there exists the potential for PAHs in stalagmites to preserve evidence of the presence and intensity of fire through time. We have previously reported a high-resolution analysis of PAH distributions in two non-overlapping aragonite stalagmites from cave KNI-51, tropical Western Australia, that together span the majority of the last 900 years. The geologic conditions of this site make it well suited for the transmission of discrete pulses of fire-derived compounds from the land surface to the stalagmite. Soils are thin to absent above the stalagmite chamber and the cave is shallow. As a result, homogenization of infiltrated water (and thus PAHs) is expected to be small on interannual time scales. In addition, intense summer monsoon rains flush fire debris from the hillsides over the cave. These characteristics, coupled with the fast growth rates (1-2 mm/yr) and precise radiometric dates (±1-30 years 2 s.d. over the last millennium) of KNI-51 stalagmites suggest that they hold the potential for extremely high resolution paleofire reconstruction. Here we provide the first test of replication of PAH abundances, ratios, and trends in coeval stalagmites. Samples were analyzed at Ca’ Foscari University using methods of Argiriadis et al. (2019) and the results validated by comparing them with fire activity detected through satellite images. Stalagmites KNI-51-F and -G overlap in age from CE 1310-1630, allowing an examination of the consistency of the PAH signal along different infiltration pathways. References Argiriadis, E. et al. (2019) European Geosciences Union Annual Meeting, Vienna, Australia. Denniston, R.F. et al. (2018) American Geophysical Union Annual Meeting, Washington, D.C. Perrette, Y. et al. (2008) Chemical Geology, 251, 67-76. Perrette, Y. et al. (2013) Organic Geochemistry, 65, 37-45. 
    more » « less
  2. Human activity and climate change are altering natural rates and intensities of wildfire, but the scale and extent of burning prior to the modern era are poorly understood. Prehistoric fire activity can be reconstructed using a variety of records including charcoal deposited along with sediment at the bottom of lakes and burn scars on tree rings, but these are not available in all environmental settings. We are developing a new paleofire proxy: polycyclic aromatic hydrocarbons (PAHs) in stalagmites. PAHs are produced by the burning of vegetation, with molecular weights reflecting combustion conditions. After being formed in a fire, PAHs are transported downward by infiltrating rainwater and in cave areas can become incorporated into stalagmites as they crystallize from drip water in underlying caves (Perrette et al., 2008; Denniston et al., 2018). Thus, the potential exists for PAHs in stalagmites to preserve evidence of the presence and intensity of fire through time. Because this is a new method, several important tests need to be performed to evaluate its veracity. I assessed how well PAH abundances, ratios, and trends replicate between two coeval stalagmites from cave KNI-51 located in the tropics of Western Australia. Stalagmite KNI-51-F was previously analyzed and I analyzed the overlapping portion of stalagmite KNl-51-G: overlap in age from CE 1310-1630. This work was done at Ca' Foscari University, Venice, in the fall of 2022, under the direction of Dr. Elena Argiriadis. The results show similarities between the area of overlap in the G and F stalagmites. The commonalities of the concentrations of PAH in the stalagmites indicate confidence in the developed method in assessing pyrogenic compounds in coeval stalagmites. 
    more » « less
  3. Monazite-(Ce) and xenotime-(Y) occur as secondary minerals in iron-oxide-apatite (IOA) deposits, and their stability and composition are important indicators of timing and conditions of metasomatism. Both of these minerals occur as replacement of apatite and display slight but important variations in light (e.g. La, Ce, Pr, Nd, etc.) and heavy (e.g. Y, Er, Dy, Yb, etc.) REE concentrations [1,2]. The causes for these chemical variations can be quantified by combining thermodynamic modeling with field observations. Major challenges for determining the stability of these minerals in hydrothermal solutions are the underlying models for calculating the thermodynamic properties of REE-bearing mineral solid solutions and aqueous species as a function of temperature and pressure. The thermodynamic properties of monazite and xenotime have been determined using several calorimetric methods [3], but only a few hydrothermal solubility studies have been undertaken, which test the reliability and compatibility of both the calorimetric data and thermodynamic properties of associated REE aqueous species [4,5]. Here, we evaluate the conditions of REE metasomatism in the Pea Ridge IOA-REE deposit in Missouri, and combine newly available experimental solubility data to simulate the speciation of LREE vs. HREE, and the partitioning of REE as a function of varying fluid compositions and temperatures. Our new experimental data will be implemented in the MINES thermodynamic database (http:// tdb.mines.edu) for modeling the chemistry of crustal fluid-rock equilibria [6]. [1] Harlov et al. (2016), Econ. Geol. 111, 1963-1984;[2] Hofstra et al. (2016), Econ. Geol. 111, 1985-2016; [3] Navrotsky et al. (2015), J. Chem. Thermodyn. 88, 126-141; [4] Gysi et al. (2015), Chem. Geol. 83-95; [5] Gysi et al. (2018), Geochim. Cosmochim. Acta 242, 143-164; [6] Gysi (2017), Pure and Appl. Chem. 89, 581-596. 
    more » « less
  4. Critical mineral deposits form through an interplay of magmatic-hydrothermal processes in carbonatites and (per)alkaline systems during their emplacement in the Earth’s crust. Hydrothermal aqueous fluids can lead to the mobilization, transport, and deposition of the rare earth elements (REE) coupled to development of alteration zones at the deposit scale [1]. However, unraveling the underlying processes that affect the solubility of REE in these geologic fluids is a challenge in high temperature and pressure fluids [2]. A holistic approach is key to understand the controls of fluid-rock interaction in mobilizing REE in critical mineral deposits. Through a joint effort, we formed a new U.S. geoscience critical minerals experimental–thermodynamic research hub between New Mexico Tech, Los Alamos National Laboratory and Indiana University. The goal of this project is to conduct frontiers research on the behavior of critical elements in supercritical aqueous fluids by integration of a wide array of high temperature solubility experiments complemented by spectroscopic measurements and molecular dynamic simulations. Here we present current advances to simulate a significant vein paragenesis of barite + fluorite +calcite +bastnäsite-(Ce) observed in many critical mineral deposits. A case study will be presented from the Gallinas Mountains REE-fluorite hydrothermal breccia deposit in New Mexico. Using the GEMS code package [3] and the MINES thermodynamic database (https://geoinfo.nmt.edu/mines-tdb), we highlight our current capabilities and limitations to simulate the behavior of REE in these hydrothermal fluids and minerals. A thermodynamic model is presented to simulate the partitioning of REE between calcite- and fluorite-fluid based on recent and ongoing experimental and thermodynamic work on the synthesis of REE doped minerals [4] and REE speciation in acidic and alkaline fluids. We further show how to integrate multiple experimental datasets and develop new thermodynamic models based on the new research efforts from the research hub and future directions to improve our prediction capabilities of REE complexation in supercritical fluids. [1] Gysi et al. (2016), Econ. Geol. 111, 1241-1276; [2] Migdisov et al. (2016), Chemical Geology 439, 13-42. [3] Kulik et al. (2013), Comput Geosci 17, 1–24. [4] Perry and Gysi (2020), Geochim. Cosmochim. Acta 286, 177-197. 
    more » « less
  5. The Azores High (AH), a subtropical ridge in the atmosphere over the North Atlantic comprising one node of the North Atlantic Oscillation (NAO) system, has a dominant influence on the weather and climate of the Iberian Peninsula and northwest Africa. The behavior of the entire NAO system over the last millennium has been the subject of much debate in both proxy- and model-based studies. Many studies have focused on the behavior of the entire NAO system, but we focus solely on the behavior of the AH due to its proximity to this region. Other proxies from this region, mainly from Spain and Morocco, have provided details about atmospheric dynamics yet spatiotemporal gaps remain. In this study, we present a continuous, sub-decadally-resolved composite stalagmite carbon isotopic record from three partially overlapping stalagmites from Buraca Gloriosa (BG) cave, western Portugal, situated within the center of the AH, that preserves evidence of regional hydroclimate variability from approximately 800 CE to the present. This composite record, developed from U-Th dating and laminae counting paired with carbon isotopes, primarily reflects effective moisture in western Portugal. Given the close pairing of AH behavior (intensity, size, and location) and moisture transport in this region, the BG composite record allows for a thorough analysis of AH behavior over time. Multidecadal to centennial scale variability in the BG record and state-of-the-art last millennium climate model simulations show considerable coherence with precipitation-sensitive records from Spain and Morocco that, like BG, are strongly influenced by the intensity, size, and location of the AH. Synthesis of model output and proxy data suggests that western Portugal was persistently dry during much of the Medieval Climate Anomaly (MCA; ~850-1250 CE) and Modern era (1850 CE-present) and experienced wetter conditions during Little Ice Age (LIA; ~1400-1850 CE). Even considering age uncertainties from the Iberian Peninsula and northwest Africa proxy records, the apparent timing in the transition from a relatively dry MCA to a wetter LIA is spatially variable across this region, likely due to the non-stationary behavior of the AH system. 
    more » « less