In dusty plasma environments, spontaneous growth of nanoparticles from reactive gases has been extensively studied for over three decades, primarily focusing on hydrocarbons and silicate particles. Here, we introduce the growth of titanium dioxide, a wide bandgap semiconductor, as dusty plasma nanoparticles. The resultant particles exhibited a spherical morphology and reached a maximum monodisperse radius of 235 ± 20 nm after growing for 70 s. The particle grew linearly, and the growth displayed a cyclic behavior; that is, upon reaching their maximum radius, the largest particles fell out of the plasma, and the next growth cycle immediately followed. The particles were collected after being grown for different amounts of time and imaged using scanning electron microscopy. Further characterization was carried out using energy dispersive x-ray spectroscopy, x-ray diffraction, and Raman spectroscopy to elucidate the chemical composition and crystalline properties of the maximally sized particles. Initially, the as-grown particles exhibited an amorphous structure after 70 s. However, annealing treatments at temperatures of 400 and 800 °C induced crystallization, yielding anatase and rutile phases, respectively. Annealing at 600 °C resulted in a mixed phase of anatase and rutile. These findings open avenues for a rapid and controlled growth of titanium dioxide via dusty plasma.
more »
« less
Preservation of a Dust Crystal as it Falls in an Afterglow Plasma
In an experiment, the power that sustains a plasma was extinguished, so that microspheres, which had been levitated, fell downward toward a lower electrode. At the beginning of their fall, the microspheres were self-organized with a crystalline structure. This structure was found to be preserved as the microspheres accelerated all the way to the lower electrode. Although microspheres had, in this afterglow plasma, large positive charges of 12,500 e , their interparticle repulsion was unable to significantly alter the crystalline arrangement of the microspheres, as they fell. After their impact on the lower electrode, the microspheres bounced upward, and only then was the crystalline structure lost.
more »
« less
- Award ID(s):
- 1740379
- PAR ID:
- 10410942
- Date Published:
- Journal Name:
- Frontiers in Physics
- Volume:
- 10
- ISSN:
- 2296-424X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This study reports an experimental comparison of two types of atmospheric pressure plasma jets in terms of their fundamental plasma characteristics and efficacy in bacterial sterilization. The plasma jets are fabricated by inserting a high voltage electrode inside a one-end closed (double DBD plasma jet) or both ends open (single DBD plasma jet) quartz tubes which are further enclosed inside a second quartz tube containing a ground electrode. Both plasma jets are operated in contact with water surface by using a unipolar pulsed DC power supply with helium as the working gas. Results from electrical and time-resolved imaging show that the single DBD configuration induces 3–4 times higher accumulation of charges onto the water surface with significantly faster propagation of plasma bullets. These results are accompanied by the higher discharge intensity as well as stronger emissions from short-lived reactive species which were analyzed through optical emission spectroscopy at the plasma-water interface. The rotational temperature for the single DBD configuration was observed to be higher making it unsafe for direct treatments of sensitive biological targets. These characteristics of the single DBD configuration result in the production of more than two times higher concentration of H 2 O 2 in plasma activated water. Shielding of the HV electrode reduces the plasma potential which in turn reduces the electric field & electron energy at the plasma-water interface. The reduced electric field for the double DBD configuration was lower by ≈463 Td than the single DBD configuration. The bactericidal efficacy of the two configurations of the plasma jets were tested against Escherichia coli , a well studied Gram-negative bacterium that can be commensal and pathogenic in human body. Our results demonstrate that although single DBD plasma jet result in stronger antibacterial effects, the double DBD configuration could be safer.more » « less
-
Abstract Microplastics are of increasing concern as they are readily ingested by aquatic organisms. This study investigated microplastic trophic transfer using larval inland silversides (Menidia beryllina) (5 d posthatch) and unicellular tintinnid (Favellaspp.) as a model food chain relevant to North American estuaries. Low‐density polyethylene microspheres (10–20 μm) were used to compare direct ingestion of microplastics by larval fish and trophic transfer via tintinnid prey. Dichlorodiphenyltrichloroethane (DDT)‐treated microspheres were used to determine sorbed pollutant effects on microplastic ingestion. Larval fish exposed directly to microspheres ingested significantly fewer than those exposed via contaminated prey. Larvae ingested significantly more ciliates containing DDT‐treated microspheres than ciliates containing untreated plastics but did not discriminate when exposed directly. Larvae reared for 16 d following a direct 2 h exposure had significantly lower wet weight values than unexposed controls. Our results demonstrate that trophic transfer is a significant route of microplastic exposure that can cause detrimental effects in sensitive life stages.more » « less
-
Abstract Electrophoretic deposition (EPD) of colloidal particles is a practical system for the study of crystallization and related physical phenomena. The aggregation is driven by the electroosmotic flow fields and induced dipole moments generated by the polarization of the electrode‐particle‐electrolyte interface. Here, the electrochemical control of aggregation and repulsion in the electrophoretic deposition of colloidal microspheres is reported. The nature of the observed transition depended on the composition of the solvent, switching from electrode‐driven aggregation in water to electrical field‐driven repulsion in ethanol for otherwise identical systems of colloidal microspheres. This work uses optical microscopy‐derived particles and a recently developed particle insertion method approach to extract model‐free, effective interparticle potentials to describe the ensemble behavior of the particles as a function of the solvent and electrode potential at the electrode interface. This approach can be used to understand the phase behavior of these systems based on the observable particle positions rather than a detailed understanding of the electrode‐electrolyte microphysics. This approach enables simple predictability of the static and dynamic behaviors of functional colloid‐electrode interfaces.more » « less
-
null (Ed.)Superhard boron-rich boron carbide coatings were deposited on silicon substrates by microwave plasma chemical vapor deposition (MPCVD) under controlled conditions, which led to either a disordered or crystalline structure, as measured by X-ray diffraction. The control of either disordered or crystalline structures was achieved solely by the choice of the sample being placed either directly on top of the sample holder or within an inset of the sample holder, respectively. The carbon content in the B-C bonded disordered and crystalline coatings was 6.1 at.% and 4.5 at.%, respectively, as measured by X-ray photoelectron spectroscopy. X-ray diffraction analysis of the crystalline coating provided a good match with a B50C2-type structure in which two carbon atoms replaced boron in the α-tetragonal B52 structure, or in which the carbon atoms occupied different interstitial sites. Density functional theory predictions were used to evaluate the dynamical stability of the potential B50C2 structural forms and were consistent with the measurements. The measured nanoindentation hardness of the coatings was as high as 64 GPa, well above the 40 GPa threshold for superhardness.more » « less
An official website of the United States government

