skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Perspectives on Diversity: Examining Perceptions of Campus and Departmental Climates amongst Domestic and International Computing Graduate Students
This study explores whether domestic and international students differ in their perceptions of institutional environments, particularly as it relates to issues regarding diversity. In general, the findings suggest that domestic students 1) have less favorable impressions of the overall campus climate and 2) generally reported that the campus and department climates for diversity were less accepting of different demographics. Implications for research, policy and practice are discussed with a focus on creating more equitable institutional environments for underrepresented groups.  more » « less
Award ID(s):
2230322
PAR ID:
10410979
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Conference on Research in Equity and Sustained Participation in Engineering, Computing, and Technology (RESPECT)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Longitudinal analysis of nationwide single and multi-institutional data shows the positive relationship between student educational outcomes and a diverse student population. Various position papers and empirical studies have raised awareness about the importance of diversity in higher education within the academic community and policy makers over the past half century. However, lack of participation by underrepresented students in higher education remains a chronic and multidimensional problem. Mitigating any particular factor and expecting broad based impact has not worked and will not work. The U.S. Department of education suggested some proven, over-arching principles for institutions of higher education to increase diversity, viz.: institutional commitment, diversity at all levels, outreach and recruitment, support services for students, and an inclusive campus environment. While some of these principles can only be addressed at the institutional level, a department or college can adopt scaled versions of these principles and influence the policies at the institutional level. This paper discusses the journey of a school of engineering towards developing strategies for improving equity, inclusion, and diversity in the graduate programs in engineering. In the process, this group of researchers articulated some critical issues that prevent diverse and economically disadvantaged undergraduate students from seeking a graduate degree in engineering. The authors have identified the following major reasons hindering students from pursuing a graduate degree: lack of financial support and resources, fear of the unknown, imposter syndrome, and family pressure to start earning as soon as possible. Each of these areas requires a targeted approach to help diversify the graduate engineering programs. A GVSU team comprised of administrators and faculty members sought to build a comprehensive program that incorporates all of the aforementioned structures and others. This paper describes the development strategy of such a program that culminated with an NSF (National Science Foundation) award. 
    more » « less
  2. Miller, Eva (Ed.)
    The COVID-19 pandemic disrupted global educational systems with institutions transitioning to e-learning. Undergraduate STEM students complained about lowered motivation to learn and complete STEM course requirements. To better prepare for more effective STEM education delivery during high-risk conditions such as pandemics, it is important to understand the learning motivation challenges (LMCs) experienced by students. As part of a larger national research study investigating decision-making in undergraduate STEM students during COVID-19, the purpose of this research is to examine LMCs experienced by undergraduate STEM students. One hundred and ninety students from six U.S. institutions participated in Qualtrics-based surveys. Utilizing a five-point Likert scale, respondents ranked the extent to which they agreed to LMC statements. Using Qualtrics Data Analysis tools and MS Excel, data from 130 useable surveys was analyzed utilizing descriptive and inferential statistics. Results revealed that regardless of classification, GPA, age, or race, STEM students experienced LMCs. The top five LMCs were: (1) Assignment Overloads; (2) Lack of In-Person Peer Interactions; (3) Uncaring Professors; (4) Lack of In-Person Professor Interactions; and (5) Lack of In-Person Laboratory Experiences. Significant relationships existed between three characteristics (GPA, classification, and age) and few LMCs to include assignment overloads. Students tended to attribute lowered motivation to Institutional and Domestic challenges which were typically out of their control, rather than to Personal challenges which were typically within their control. Crosstab analysis suggested that Sophomores, Asians, as well as students with GPAs between 2.00 and 2.49 and aged 41 to 50 years may be the most vulnerable due to higher dependence on traditional in-person STEM educational environments. Early identification of the most vulnerable students should be quickly followed by interventions. Increased attention towards sophomores may reduce exacerbation of potential sophomore slump and middle-child syndrome. All STEM students require critical domestic, institutional, and personal resources. Institutions should strengthen students’ self-regulation skills and provide increased opportunities for remote peer interactions. Training of faculty and administrators is critical to build institutional capacity to motivate and educate STEM students with diverse characteristics in e-learning environments. Pass/fail policies should be carefully designed and implemented to minimize negative impacts on motivation. Employers should expand orientation and mentoring programs for entry-level employees, particularly for laboratory-based tasks. Research is needed to improve the delivery of STEM laboratory e-learning experiences. Findings inform future research, as well as best practices for improved institutional adaptability and resiliency. These will minimize disruptions to student functioning and performance, reduce attrition, and strengthen progression into the STEM workforce during high-risk conditions such as pandemics. With caution, findings may be extended to non-STEM and non-student populations. 
    more » « less
  3. Student service members/veterans (SSM/Vs)—defined as undergraduates in the U.S. military or who have military experience—have been an emergent group of adult learners in American 4-year universities. Because of their national service, and because SSM/Vs are supported by significant public investments, their success is critical. Little quantitative research, however, has consistently focused on the question of whether military experience—as it is distinct from common adult student traits—significantly associates with student attributes and viewpoints research shows are important in college. Using survey data from SSM/Vs and civilian undergraduate students across four public universities (n=1,255), field theory, and multiple regression analyses, we explore correlations between student military experience and important undergraduate characteristics (commuter, first-generation, transfer, impairment, and full-time enrollment status, first-year college grades, hours employed, and financial stress) and perspectives (campus belonging, academic major belonging, and institutional satisfaction). After controlling for age and other influential covariates, results show that student military experience significantly correlates with commuter status, first-generation status, physical and cognitive impairment, full-time enrollment, fewer employment hours, and less financial stress, characteristics conceptualized as facets of field social position. Military experience also significantly correlates with lower campus belonging, lower academic major belonging, and lower institutional satisfaction, perspectives conceptualized as field constraints. 
    more » « less
  4. Despite significant efforts to broaden participation in postsecondary science, technology, engineering, and math (STEM) education, students from historically minoritized populations continue to face systemic barriers related to access, departmental climate, and institutional practices. Previous research suggests that campus-level STEM diversity programs often serve as a valuable resource for persistence and completion among students from underrepresented populations. However, more knowledge is needed to better understand how students experience STEM diversity programs and identify with their specific practices and activities, how those practices and activities shape students’ experiences, and how the practices, activities, and participation influence how students view themselves as members of the STEM community. Increases in the number of underrepresented students completing STEM degrees would result in new innovations to address world problems, more varied representations of scientists, and more individuals who could mentor future generations of learners. This study of 20 underrepresented students, all of whom participated in the Louis Stokes Alliance for Minority Participation (LSAMP) program, describes the programmatic influences of LSAMP that support students’ successful progress within STEM disciplines. Data reveal that: (a) students entered the LSAMP program with self-defined strengths; (b) the LSAMP program provided formal academic support; and (c) students experienced evolving forms of scientific and identity development. This study centers students’ voices to inform educational practices, policies, and future research focused on the persistent need to broaden participation in STEM careers. 
    more » « less
  5. Although there are numerous evidence-based benefits to undergraduate research for new-majority students (students who are from traditionally underrepresented ethnicities, first-generation college students, students from lower-income families, or transfer students) (Hurtado, S. et al., 2011; Kinzie et al., 2008a; Lopatto, 2007), they are less likely to participate or stay in mentored research experiences (Finley & McNair, 2013; Haeger et al., 2015). In order to determine not only who has access to undergraduate research, but to also identify what barriers to full-inclusion exist for new-majority students, we conducted a mixed methods study at a public, Hispanic Serving Institution. We analyzed institutional data to explore who participates in research and who does not. We also specifically sampled a group of students who expressed an interest in research experiences but who never actually participated for our student survey (N=96). Additionally, we conducted five focus groups with students, staff, and faculty (N~30). We found positive results in the analysis of patterns of participation and found no significant or substantial differences between students who did or did not participate in undergraduate research in terms of race/ethnicity, gender, or first-generation status. The undergraduate researcher population did have significantly more STEM majors and Pell grant recipients. The qualitative analysis identified barriers to participation in research in the following areas: access to research opportunities, programmatic structures, research culture and norms, and campus climate. We present these findings along with descriptions of initiatives that have been successful in diversifying research participation and strategies to create more inclusive research environments. 
    more » « less