skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards computational awareness in autonomous robots: an empirical study of computational kernels
Abstract The potential impact of autonomous robots on everyday life is evident in emerging applications such as precision agriculture, search and rescue, and infrastructure inspection. However, such applications necessitate operation in unknown and unstructured environments with a broad and sophisticated set of objectives, all under strict computation and power limitations. We therefore argue that the computational kernels enabling robotic autonomy must bescheduledandoptimizedto guarantee timely and correct behavior, while allowing for reconfiguration of scheduling parameters at runtime. In this paper, we consider a necessary first step towards this goal ofcomputational awarenessin autonomous robots: an empirical study of a base set of computational kernels from the resource management perspective. Specifically, we conduct a data-driven study of the timing, power, and memory performance of kernels for localization and mapping, path planning, task allocation, depth estimation, and optical flow, across three embedded computing platforms. We profile and analyze these kernels to provide insight into scheduling and dynamic resource management for computation-aware autonomous robots. Notably, our results show that there is a correlation of kernel performance with a robot’s operational environment, justifying the notion of computation-aware robots and why our work is a crucial step towards this goal.  more » « less
Award ID(s):
1932074
PAR ID:
10411017
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Complex & Intelligent Systems
Volume:
9
Issue:
6
ISSN:
2199-4536
Format(s):
Medium: X Size: p. 6269-6295
Size(s):
p. 6269-6295
Sponsoring Org:
National Science Foundation
More Like this
  1. The rapidly increasing capabilities of autonomous mobile robots promise to make them ubiquitous in the coming decade. These robots will continue to enhance efficiency and safety in novel applications such as disaster management, environmental monitoring, bridge inspection, and agricultural inspection. To operate autonomously without constant human intervention, even in remote or hazardous areas, robots must sense, process, and interpret environmental data using only onboard sensing and computation. This capability is made possible by advancements in perception algorithms, allowing these robots to rely primarily on their perception capabilities for navigation tasks. However, tiny robot autonomy is hindered mainly by sensors, memory, and computing due to size, area, weight, and power constraints. The bottleneck in these robots lies in the real-time perception in resource-constrained robots. To enable autonomy in robots of sizes that are less than 100 mm in body length, we draw inspiration from tiny organisms such as insects and hummingbirds, known for their sophisticated perception, navigation, and survival abilities despite their minimal sensor and neural system. This work aims to provide insights into designing a compact and efficient minimal perception framework for tiny autonomous robots from higher cognitive to lower sensor levels. 
    more » « less
  2. null (Ed.)
    Cooperative 3D printing (C3DP) is a novel approach to additive manufacturing, where multiple printhead-carrying mobile robots work together cooperatively to print a desired part. The core of C3DP is the chunk-based printing strategy in which the desired part is first split into smaller chunks, and then the chunks are assigned to individual printing robots. These robots will work on the chunks simultaneously and in a scheduled sequence until the entire part is complete. Though promising, C3DP lacks proper framework that enables automatic chunking and scheduling given the available number of robots. In this study, we develop a computational framework that can automatically generate print schedule for specified number of chunks. The framework contains 1) a random generator that creates random print schedule using adjacency matrix which represents directed dependency tree (DDT) structure of chunks; 2) a set of geometric constraints against which the randomly generated schedules will be checked for validation; and 3) a printing time evaluation metric for comparing the performance of all valid schedules. With the developed framework, we present a case study by printing a large rectangular plate which has dimensions beyond what traditional desktop printers can print. The study showcases that our computation framework can successfully generate a variety of scheduling strategies for collision-free C3DP without any human interventions. 
    more » « less
  3. Robotic search often involves teleoperating vehicles into unknown environments. In such scenarios, prior knowledge of target location or environmental map may be a viable resource to tap into and control other autonomous robots in the vicinity towards an improved search performance. In this paper, we test the hypothesis that despite having the same skill, prior knowledge of target or environment affects teleoperator actions, and such knowledge can therefore be inferred through robot movement. To investigate whether prior knowledge can improve human-robot team performance, we next evaluate an adaptive mutual-information blending strategy that admits a time-dependent weighting for steering autonomous robots. Human-subject experiments show that several features including distance travelled by the teleoperated robot, time spent staying still, speed, and turn rate, all depend on the level of prior knowledge and that absence of prior knowledge increased workload. Building on these results, we identified distance travelled and time spent staying still as movement cues that can be used to robustly infer prior knowledge. Simulations where an autonomous robot accompanied a human teleoperated robot revealed that whereas time to find the target was similar across all information-based search strategies, adaptive strategies that acted on movement cues found the target sooner more often than a single human teleoperator compared to non-adaptive strategies. This gain is diluted with number of robots, likely due to the limited size of the search environment. Results from this work set the stage for developing knowledge-aware control algorithms for autonomous robots in collaborative human-robot teams. 
    more » « less
  4. null (Ed.)
    Next-generation scientific applications in various fields are experiencing a rapid transition from traditional experiment-based methodologies to large-scale computation-intensive simulations featuring complex numerical modeling with a large number of tunable parameters. Such model-based simulations generate colossal amounts of data, which are then processed and analyzed against experimental or observation data for parameter calibration and model validation. The sheer volume and complexity of such data, the large model-parameter space, and the intensive computation make it practically infeasible for domain experts to manually configure and tune hyperparameters for accurate modeling in complex and distributed computing environments. This calls for an online computational steering service to enable real-time multi-user interaction and automatic parameter tuning. Towards this goal, we design and develop a generic steering framework based on Bayesian Optimization (BO) and conduct theoretical performance analysis of the steering service. We present a case study with the Weather Research and Forecast (WRF) model, which illustrates the performance superiority of the BO-based tuning over other heuristic methods and manual settings of domain experts using regret analysis. 
    more » « less
  5. In the era of big data, materials science workflows need to handle large-scale data distribution, storage, and computation. Any of these areas can become a performance bottleneck. We present a framework for analyzing internal material structures (e.g., cracks) to mitigate these bottlenecks. We demonstrate the effectiveness of our framework for a workflow performing synchrotron X-ray computed tomography reconstruction and segmentation of a silica-based structure. Our framework provides a cloud-based, cutting-edge solution to challenges such as growing intermediate and output data and heavy resource demands during image reconstruction and segmentation. Specifically, our framework efficiently manages data storage, scaling up compute resources on the cloud. The multi-layer software structure of our framework includes three layers. A top layer uses Jupyter notebooks and serves as the user interface. A middle layer uses Ansible for resource deployment and managing the execution environment. A low layer is dedicated to resource management and provides resource management and job scheduling on heterogeneous nodes (i.e., GPU and CPU). At the core of this layer, Kubernetes supports resource management, and Dask enables large-scale job scheduling for heterogeneous resources. The broader impact of our work is four-fold: through our framework, we hide the complexity of the cloud’s software stack to the user who otherwise is required to have expertise in cloud technologies; we manage job scheduling efficiently and in a scalable manner; we enable resource elasticity and workflow orchestration at a large scale; and we facilitate moving the study of nonporous structures, which has wide applications in engineering and scientific fields, to the cloud. While we demonstrate the capability of our framework for a specific materials science application, it can be adapted for other applications and domains because of its modular, multi-layer architecture. 
    more » « less