skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reducing environmentally mediated transmission to moderate impacts of an emerging wildlife disease
Abstract Emerging infectious diseases have caused population declines and biodiversity loss. The ability of pathogens to survive in the environment, independent of their host, can exacerbate disease impacts and increase the likelihood of species extinction. Control of pathogens with environmental stages remains a significant challenge for conservation and effective management strategies are urgently needed.We examined the effectiveness of managing environmental exposure to reduce the impacts of an emerging infectious disease of bats, white‐nose syndrome (WNS). We used a chemical disinfectant, chlorine dioxide (ClO2), to experimentally reducePseudogymnoascus destructans, the fungal pathogen causing WNS, in the environment. We combined laboratory experiments with 3 years of field trials at four abandoned mines to determine whether ClO2could effectively removeP. destructansfrom the environment, reduce host infection and limit population impacts.ClO2was effective at killingP. destructansin vitro across multiple concentrations. In field settings, higher concentrations of ClO2treatment were needed to sufficiently reduce viableP. destructansconidia in the environment.The reduction in the environmental reservoir at treatment sites resulted in lower fungal loads on bats compared to untreated control populations. Survival following treatment was also higher in little brown bats (Myotis lucifugus), and trended higher for tricolored bats (Perimyotis subflavus).Synthesis and applications. Our results highlight that targeted management of sources for environmental transmission can be an effective control strategy for wildlife disease. We found that successfully reducing pathogen in the environment decreased disease severity and increased survival, but required higher treatment exposure than was effective in laboratory experiments, and the effects varied among species. More broadly, our findings have implications for other emerging wildlife diseases with free‐living pathogen stages by highlighting how the degree of environmental contamination can have cascading impacts on hosts, presenting an opportunity for intervention.  more » « less
Award ID(s):
1911853
PAR ID:
10411045
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Applied Ecology
Volume:
60
Issue:
5
ISSN:
0021-8901
Page Range / eLocation ID:
p. 923-933
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Emerging infectious diseases can have devastating effects on host communities, causing population collapse and species extinctions. The timing of novel pathogen arrival into naïve species communities can have consequential effects that shape the trajectory of epidemics through populations. Pathogen introductions are often presumed to occur when hosts are highly mobile. However, spread patterns can be influenced by a multitude of other factors including host body condition and infectiousness.White‐nose syndrome (WNS) is a seasonal emerging infectious disease of bats, which is caused by the fungal pathogenPseudogymnoascus destructans. Within‐site transmission ofP. destructansprimarily occurs over winter; however, the influence of bat mobility and infectiousness on the seasonal timing of pathogen spread to new populations is unknown. We combined data on host population dynamics and pathogen transmission from 22 bat communities to investigate the timing of pathogen arrival and the consequences of varying pathogen arrival times on disease impacts.We found that midwinter arrival of the fungus predominated spread patterns, suggesting that bats were most likely to spreadP.destructanswhen they are highly infectious, but have reduced mobility. In communities whereP. destructanswas detected in early winter, one species suffered higher fungal burdens and experienced more severe declines than at sites where the pathogen was detected later in the winter, suggesting that the timing of pathogen introduction had consequential effects for some bat communities. We also found evidence of source–sink population dynamics over winter, suggesting some movement among sites occurs during hibernation, even though bats at northern latitudes were thought to be fairly immobile during this period. Winter emergence behaviour symptomatic of white‐nose syndrome may further exacerbate these winter bat movements to uninfected areas.Our results suggest that low infectiousness during host migration may have reduced the rate of expansion of this deadly pathogen, and that elevated infectiousness during winter plays a key role in seasonal transmission. Furthermore, our results highlight the importance of both accurate estimation of the timing of pathogen spread and the consequences of varying arrival times to prevent and mitigate the effects of infectious diseases. 
    more » « less
  2. Abstract Pathogens with persistent environmental stages can have devastating effects on wildlife communities. White-nose syndrome (WNS), caused by the fungusPseudogymnoascus destructans,has caused widespread declines in bat populations of North America. In 2009, during the early stages of the WNS investigation and before molecular techniques had been developed to readily detectP. destructansin environmental samples, we initiated this study to assess whetherP. destructanscan persist in the hibernaculum environment in the absence of its conclusive bat host and cause infections in naive bats. We transferred little brown bats (Myotis lucifugus) from an unaffected winter colony in northwest Wisconsin to twoP. destructanscontaminated hibernacula in Vermont where native bats had been excluded.Infection withP. destructanswas apparent on some bats within 8 weeks following the introduction of unexposed bats to these environments, and mortality from WNS was confirmed by histopathology at both sites 14 weeks following introduction. These results indicate that environmental exposure toP. destructansis sufficient to cause the infection and mortality associated with WNS in naive bats, which increases the probability of winter colony extirpation and complicates conservation efforts. 
    more » « less
  3. Temperature is a critically important factor in many infectious disease systems, because it can regulate responses in both the host and the pathogen. White-nose syndrome (WNS) in bats is a severe infectious disease caused by the temperature-sensitive fungus, Pseudogymnoascus destructans ( Pd ). One feature of WNS is an increase in the frequency of arousal bouts (i.e. when bat body temperatures are elevated) in Pd -infected bats during hibernation. While several studies have proposed that increased frequency of arousals may play a role in the pathophysiology of WNS, it is unknown if the temperature fluctuations might mediate Pd growth. We hypothesized that exposure to a high frequency of elevated temperatures would reduce Pd growth due to thermal constraints on the pathogen. We simulated the thermal conditions for arousal bouts of uninfected and infected bats during hibernation (fluctuating from 8 to 25°C at two different rates) and quantified Pd growth in vitro . We found that increased exposure to high temperatures significantly reduced Pd growth. Because temperature is one of the most critical abiotic factors mediating host–pathogen interactions, resolving how Pd responds to fluctuating temperatures will provide insights for understanding WNS in bats and other fungal diseases. 
    more » « less
  4. Mitchell, Aaron P (Ed.)
    The emergence of white-nose syndrome (WNS) in North America has resulted in mass mortalities of hibernating bats and total extirpation of local populations. The need to mitigate this disease has stirred a significant body of research to understand its pathogenesis.Pseudogymnoascus destructans, the causative agent of WNS, is a psychrophilic (cold-loving) fungus that resides within the class Leotiomycetes, which contains mainly plant pathogens and is unrelated to other consequential pathogens of animals. In this review, we revisit the unique biology of hibernating bats andP.destructansand provide an updated analysis of the stages and mechanisms of WNS progression. The extreme life history of hibernating bats, the psychrophilic nature ofP.destructans, and its evolutionary distance from other well-characterized animal-infecting fungi translate into unique host–pathogen interactions, many of them yet to be discovered. 
    more » « less
  5. Pathogens with persistent environmental stages can have devastating effects on wildlife communities. White-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans, has caused widespread declines in bat populations of North America. In 2009, during the early stages of the WNS investigation and before molecular techniques had been developed to readily detect P. destructans in environmental samples, we initiated this study to assess whether P. destructans can persist in the hibernaculum environment in the absence of its conclusive bat host and cause infections in naive bats. We transferred little brown bats (Myotis lucifugus) from an unaffected winter colony in northwest Wisconsin to two P. destructans contaminated hibernacula in Vermont where native bats had been excluded. Infection with P. destructans was apparent on some bats within 8 weeks following the introduction of unexposed bats to these environments, and mortality from WNS was confirmed by histopathology at both sites 14 weeks following introduction. These results indicate that environmental exposure to P. destructans is sufficient to cause the infection and mortality associated with WNS in naive bats, which increases the probability of winter colony extirpation and complicates conservation efforts. 
    more » « less