Studies of protein structure and dynamics are usually carried out in dilute buffer solutions, conditions that differ significantly from the crowded environment in the cell. The double electron‐electron resonance (DEER) technique can track proteins’ conformations in the cell by providing distance distributions between two attached spin labels. This technique, however, cannot access distances below 1.8 nm. Here, we show that GdIII‐19F Mims electron‐nuclear double resonance (ENDOR) measurements can cover part of this short range. Low temperature solution and in‐cell ENDOR measurements, complemented with room temperature solution and in‐cell GdIII‐19F PRE (paramagnetic relaxation enhancement) NMR measurements, were performed on fluorinated GB1 and ubiquitin (Ub), spin‐labeled with rigid GdIIItags. The proteins were delivered into human cells via electroporation. The solution and in‐cell derived GdIII‐19F distances were essentially identical and lie in the 1–1.5 nm range revealing that both, GB1 and Ub, retained their overall structure in the GdIIIand19F regions in the cell.
Studies of protein structure and dynamics are usually carried out in dilute buffer solutions, conditions that differ significantly from the crowded environment in the cell. The double electron‐electron resonance (DEER) technique can track proteins’ conformations in the cell by providing distance distributions between two attached spin labels. This technique, however, cannot access distances below 1.8 nm. Here, we show that GdIII‐19F Mims electron‐nuclear double resonance (ENDOR) measurements can cover part of this short range. Low temperature solution and in‐cell ENDOR measurements, complemented with room temperature solution and in‐cell GdIII‐19F PRE (paramagnetic relaxation enhancement) NMR measurements, were performed on fluorinated GB1 and ubiquitin (Ub), spin‐labeled with rigid GdIIItags. The proteins were delivered into human cells via electroporation. The solution and in‐cell derived GdIII‐19F distances were essentially identical and lie in the 1–1.5 nm range revealing that both, GB1 and Ub, retained their overall structure in the GdIIIand19F regions in the cell.
more » « less- NSF-PAR ID:
- 10411051
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie
- Volume:
- 135
- Issue:
- 20
- ISSN:
- 0044-8249
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Electron paramagnetic resonance spectroscopy in combination with site-directed spin labeling is a very powerful tool for elucidating the structure and organization of biomolecules. Gd 3+ complexes have recently emerged as a new class of spin labels for distance determination by pulsed EPR spectroscopy at Q- and W-band. We present CW EPR measurements at 240 GHz (8.6 Tesla) on a series of Gd-rulers of the type Gd-PyMTA–spacer–Gd-PyMTA, with Gd–Gd distances ranging from 1.2 nm to 4.3 nm. CW EPR measurements of these Gd-rulers show that significant dipolar broadening of the central |−1/2〉 → |1/2〉 transition occurs at 30 K for Gd–Gd distances up to ∼3.4 nm with Gd-PyMTA as the spin label. This represents a significant extension for distances accessible by CW EPR, as nitroxide-based spin labels at X-band frequencies can typically only access distances up to ∼2 nm. We show that this broadening persists at biologically relevant temperatures above 200 K, and that this method is further extendable up to room temperature by immobilizing the sample in glassy trehalose. We show that the peak-to-peak broadening of the central transition follows the expected 1/ r 3 dependence for the electron–electron dipolar interaction, from cryogenic temperatures up to room temperature. A simple procedure for simulating the dependence of the lineshape on interspin distance is presented, in which the broadening of the central transition is modeled as an S = 1/2 spin whose CW EPR lineshape is broadened through electron–electron dipolar interactions with a neighboring S = 7/2 spin.more » « less
-
Abstract 19F NMR spectroscopy is an attractive and growing area of research with broad applications in biochemistry, chemical biology, medicinal chemistry, and materials science. We have explored fast magic angle spinning (MAS)19F solid‐state NMR spectroscopy in assemblies of HIV‐1 capsid protein. Tryptophan residues with fluorine substitution at the 5‐position of the indole ring were used as the reporters. The19F chemical shifts for the five tryptophan residues are distinct, reflecting differences in their local environment. Spin‐diffusion and radio‐frequency‐driven‐recoupling experiments were performed at MAS frequencies of 35 kHz and 40–60 kHz, respectively. Fast MAS frequencies of 40–60 kHz are essential for consistently establishing19F–19F correlations, yielding interatomic distances of the order of 20 Å. Our results demonstrate the potential of fast MAS19F NMR spectroscopy for structural analysis in large biological assemblies.
-
Abstract 19F NMR spectroscopy is an attractive and growing area of research with broad applications in biochemistry, chemical biology, medicinal chemistry, and materials science. We have explored fast magic angle spinning (MAS)19F solid‐state NMR spectroscopy in assemblies of HIV‐1 capsid protein. Tryptophan residues with fluorine substitution at the 5‐position of the indole ring were used as the reporters. The19F chemical shifts for the five tryptophan residues are distinct, reflecting differences in their local environment. Spin‐diffusion and radio‐frequency‐driven‐recoupling experiments were performed at MAS frequencies of 35 kHz and 40–60 kHz, respectively. Fast MAS frequencies of 40–60 kHz are essential for consistently establishing19F–19F correlations, yielding interatomic distances of the order of 20 Å. Our results demonstrate the potential of fast MAS19F NMR spectroscopy for structural analysis in large biological assemblies.
-
Abstract Early studies suggested that FeIIIcomplexes cannot compete with GdIIIcomplexes as T1MRI contrast agents. Now it is shown that one member of a class of high‐spin macrocyclic FeIIIcomplexes produces more intense contrast in mice kidneys and liver at 30 minutes post‐injection than does a commercially used GdIIIagent and also produces similar T1relaxivity in serum phantoms at 4.7 T and 37 °C. Comparison of four different FeIIImacrocyclic complexes elucidates the factors that contribute to relaxivity in vivo including solution speciation. Variable‐temperature17O NMR studies suggest that none of the complexes has a single, integral inner‐sphere water that exchanges rapidly on the NMR timescale. MRI studies in mice show large in vivo differences of three of the FeIIIcomplexes that correspond, in part, to their r1relaxivity in phantoms. Changes in overall charge of the complex modulate contrast enhancement, especially of the kidneys.