skip to main content


Title: On the choice of coordinate origin in length gauge optical rotation calculations
Abstract

In this work, we explore the issue of origin dependence in optical rotation (OR) calculations in the length dipole gauge (LG) using standard approximate methods belonging to density functional theory (DFT) and coupled cluster (CC) theory. We use the origin‐invariant LG approach, LG(OI), that we recently proposed as reference for the calculations, and we study whether a proper choice of coordinate origin and molecular orientation can be made such that diagonal elements of the LG‐OR tensor match those of the LG(OI) tensor. Using a numerical search algorithm, we show that multiple spatial orientations can be found where the LG and LG(OI) results match. However, a simple analytical procedure provides a spatial orientation where the origin of the coordinate system is close to the center of mass of the molecule. At the same time, we also show that putting the origin at the center of mass is not an ideal choice for every molecule (relative errors in the OR up to 70% can be obtained in out test set). Finally, we show that the choice of coordinate origin based on the analytical procedure is transferable across different methods and it is superior to putting the origin in the center of mass or center of nuclear charge. This is important because the LG(OI) approach is trivial to implement for DFT, but not necessarily for nonvariational methods in the CC family. Therefore, one can determine an optimal coordinate origin at DFT level and use it for standard LG‐CC response calculations.

 
more » « less
Award ID(s):
2154452 2117449
PAR ID:
10411058
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chirality
ISSN:
0899-0042
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a method for obtaining origin-independent electronic circular dichroism (ECD) in the length-gauge representation LG(OI) without the usage of London atomic orbitals. This approach builds upon the work by Caricato [J. Chem. Phys. 153, 151101 (2020)] and is applied to rotatory strengths and ECD spectra from damped response theory. Numerical results are presented for time-dependent Hartree–Fock and density-functional theory, the second-order algebraic diagrammatic construction method, and linear-response coupled-cluster theory with singles and approximate doubles. We can support the finding that the common choice of placing the gauge origin in the center of mass of a molecule in conventional length-gauge calculations involving chiroptical properties might not be optimal and show that LG(OI) is a valuable alternative for the origin-independent calculation of ECD spectra. We show that, for a limited test set, the convergence of the rotatory strengths calculated with the LG(OI) approach toward the basis-set limit tends to be faster than for the established velocity gauge representation. Relationships between the sum-over-states expression of the optical rotation in the LG(OI) framework and its representation in terms of response functions are analyzed. 
    more » « less
  2. We present a new implementation for computing spin–orbit couplings (SOCs) within a time-dependent density-functional theory (TD-DFT) framework in the standard spin-conserving formulation as well in the spin–flip variant (SF-TD-DFT). This approach employs the Breit–Pauli Hamiltonian and Wigner–Eckart’s theorem applied to the reduced one-particle transition density matrices, together with the spin–orbit mean-field treatment of the two-electron contributions. We use a state-interaction procedure and compute the SOC matrix elements using zero-order non-relativistic states. Benchmark calculations using several closed-shell organic molecules, diradicals, and a single-molecule magnet illustrate the efficiency of the SOC protocol. The results for organic molecules (described by standard TD-DFT) show that SOCs are insensitive to the choice of the functional or basis sets, as long as the states of the same characters are compared. In contrast, the SF-TD-DFT results for small diradicals (CH 2 , [Formula: see text], SiH 2 , and [Formula: see text]) show strong functional dependence. The spin-reversal energy barrier in a Fe(III) single-molecule magnet computed using non-collinear SF-TD-DFT (PBE0, ωPBEh/cc-pVDZ) agrees well with the experimental estimate. 
    more » « less
  3. This paper reports the derivation and implementation of the electric dipole-magnetic dipole and electric dipole-electric quadrupole polarizability tensors at the density functional theory level with periodic boundary conditions (DFT-PBC). These tensors are combined to evaluate the Buckingham/Dunn tensor that describes the optical rotation (OR) in oriented chiral systems. We describe several aspects of the derivation of the equations and present test calculations that verify the correctness of the tensor formulation and their implementation. The results show that the full OR tensor is completely origin invariant as for molecules and that PBC calculations match molecular cluster calculations on 1D chains. A preliminary investigation on the choice of density functional, basis set, and gauge indicates a similar dependence as for molecules: the functional is the primary factor that determines the OR magnitude, followed by the basis set and to a much smaller extent the choice of gauge. However, diffuse functions may be problematic for PBC calculations even if they are necessary for the molecular case. A comparison with experimental data of OR for the tartaric acid crystal shows reasonable agreement given the level of theory employed. The development presented in this paper offers the opportunity to simulate the OR of chiral crystalline materials with general-purpose DFT-PBC methods, which, in turn, may help to understand the role of intermolecular interactions on this sensitive electronic property.

     
    more » « less
  4. The robustness of nickelocene’s (NiCp2, Cp = cyclopentadienyl) magnetic anisotropy and addressability of its spin states make this molecular magnet attractive as a spin sensor. However, microscopic understanding of its magnetic anisotropy is still lacking, especially when NiCp2 is deposited on a surface to make quantum sensing devices. Quantum chemical calculations of such molecule/solid-state systems are limited to density functional theory (DFT) or DFT+U (Hubbard correction to DFT). We investigate the magnetic behavior of NiCp2 using the spin-flip variant of the equation-of-motion coupled-cluster (EOM-SF-CC) method and use the EOM-SF-CC results to benchmark SF-TD-DFT. Our first-principle calculations agree well with experimentally derived magnetic anisotropy and susceptibility values. The calculations show that magnetic anisotropy in NiCp2 originates from a large spin–orbit coupling (SOC) between the triplet ground state and the third singlet state, whereas the coupling with lower singlet excited states is negligible. We also considered a set of six ring-substituted NiCp2 derivatives and a model system of the NiCp2/MgO(001) adsorption complex, for which we used SF-TD-DFT method. To gain insight into the electronic structure of these systems, we analyze spinless transition density matrices and their natural transition orbitals (NTOs). The NTO analysis of SOCs explains how spin states and magnetic properties are retained upon modification of the NiCp2 coordination environment and upon its adsorption on a surface. Such resilience of the NiCp2 magnetic behavior supports using NiCp2 as a spin-probe molecule by functionalization of the tip of a scanning tunneling microscope. 
    more » « less
  5. We have designed a [Fe(SH)4H]− model with the fifth proton binding either to Fe or S. We show that the energy difference between these two isomers (∆E) is hard to estimate with quantum-mechanical (QM) methods. For example, different density functional theory (DFT) methods give ∆E estimates that vary by almost 140 kJ/mol, mainly depending on the amount of exact Hartree–Fock included (0%–54%). The model is so small that it can be treated by many high-level QM methods, including coupled-cluster (CC) and multiconfigurational perturbation theory approaches. With extrapolated CC series (up to fully connected coupled-cluster calculations with singles, doubles, and triples) and semistochastic heat-bath configuration interaction methods, we obtain results that seem to be converged to full configuration interaction results within 5 kJ/mol. Our best result for ∆E is 101 kJ/mol. With this reference, we show that M06 and B3LYP-D3 give the best results among 35 DFT methods tested for this system. Brueckner doubles coupled cluster with perturbaitve triples seems to be the most accurate coupled-cluster approach with approximate triples. CCSD(T) with Kohn–Sham orbitals gives results within 4–11 kJ/mol of the extrapolated CC results, depending on the DFT method. Single-reference CC calculations seem to be reasonably accurate (giving an error of ∼5 kJ/mol compared to multireference methods), even if the D1 diagnostic is quite high (0.25) for one of the two isomers.

     
    more » « less