skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Identifying Benign and Malignant Breast Tumor Using Vibro-acoustic Tactile Imaging Sensor
Tactile imaging sensor determines the tumor's mechanical properties such as size, depth, and Young's modulus based on the principle of total internal reflection of light. To improve the classifying accuracy of the Tactile imaging sensor, we introduce ultrasound signals and estimate the difference in the tumor tactile images. A developed vibro-acoustic tactile imaging sensor was used to classify benign and malignant tumors. We test the developed system on breast tumor phantoms. These vibrated tactile images are analyzed to improve the overall performance of tumor detection.  more » « less
Award ID(s):
2114675
PAR ID:
10411121
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Sensors Conference
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this work, we investigated the classification of texture by neuromorphic tactile encoding and an unsupervised learning method. Additionally, we developed an adaptive classification algorithm to detect and characterize the presence of new texture data. The neuromorphic tactile encoding of textures from a multilayer tactile sensor was based on the physical structure and afferent spike signaling of human glabrous skin mechanoreceptors. We explored different neuromorphic spike pattern metrics and dimensionality reduction techniques in order to maximize classification accuracy while improving computational efficiency. Using a dataset composed of 3 textures, we showed that unsupervised learning of the neuromorphic tactile encoding data had high classification accuracy (mean=86.46%, sd=5 .44%). Moreover, the adaptive classification algorithm was successful at determining that there were 3 underlying textures in the training dataset. In this work, tactile information is transformed into neuromorphic spiking activity that can be used as a stimulation pattern to elicit texture sensation for prosthesis users. Furthermore, we provide the basis for identifying new textures adaptively which can be used to actively modify stimulation patterns to improve texture discrimination for the user. 
    more » « less
  2. Knowledge of 3-D object shape is of great importance to robot manipulation tasks, but may not be readily available in unstructured environments. While vision is often occluded during robot-object interaction, high-resolution tactile sensors can give a dense local perspective of the object. However, tactile sensors have limited sensing area and the shape representation must faithfully approximate non-contact areas. In addition, a key challenge is efficiently incorporating these dense tactile measurements into a 3-D mapping framework. In this work, we propose an incremental shape mapping method using a GelSight tactile sensor and a depth camera. Local shape is recovered from tactile images via a learned model trained in simulation. Through efficient inference on a spatial factor graph informed by a Gaussian process, we build an implicit surface representation of the object. We demonstrate visuo-tactile mapping in both simulated and real-world experiments, to incrementally build 3-D reconstructions of household objects. 
    more » « less
  3. Infrared breast thermography has been associated with the early detection of breast cancer. However, findings in previous studies have been inconclusive. The upright position of subjects during imaging introduces errors in interpretation because it blocks the optical access in the inframammary fold region and alters the temperature due to contact between breast and chest wall. These errors can be avoided by imaging breasts in prone position. Although the numerical simulations provide insight into thermal characteristics of the female breast with a tumor, most simulations in the past have used cubical and hemispherical breast models. We hypothesize that a breast model with the actual breast shape will provide true thermal characteristics that are useful in tumor detection. A digital breast model in prone position is developed to generate the surface temperature profiles for breasts with tumors. The digital breast model is generated from sequential MRI images and simulations are performed using Finite Volume Method employing Pennes bioheat equation. We investigated the effect of varying the tumor metabolic activity on the surface temperature profile. We compared the surface temperature profile for various tumor metabolic activities with a case without tumor. The resulting surface temperature rise near the location of the tumor was between 0.665 and 1.023 °C, detectable using modern Infrared cameras. This is the first time that numerical simulations are conducted in a model with the actual breast shape in prone position to study the surface temperature changes induced by breast cancer. 
    more » « less
  4. State-of-the-art tactile sensing arrays are not scalable to large numbers of sensing units due to their raster-scanned process. This interface process results in a high degree of wiring complexity and a tradeoff between spatial and temporal resolution. In this paper, we present a new neuromimetic tactile sensing scheme that allows for single-wire signal transduction and asynchronous signal transmission - without the incorporation of electronics into each sensing element. A prototype device with spatial frequency encoding was developed using flexible fabric-based e-textile materials, and the ability of this new sensing scheme was demonstrated through a texture discrimination task. Overall, the neuromimetic spatial frequency encoded sensor array had comparable performance to the state-of-the-art tactile sensor array and achieved a classification accuracy of 86.58%. Future tactile sensing systems and electronic skins can emulate the spatial frequency encoding architecture presented here to become dense and numerous while retaining excellent temporal resolution. 
    more » « less
  5. null (Ed.)
    Scalable, high-density electronic skins (e-skins) are a desirable goal of tactile sensing. However, a realization of this goal has been elusive due to the trade-off between spatial and temporal resolution that current tactile sensors suffer from. Additionally, as tactile sensing grids become large, wiring becomes unmanageable, and there is a need for a wireless approach. In this work, a scalable, event-based, passive tactilesensing system is proposed that is based on radio-frequency identification (RFID) technology. An RFID-based tactile sensing hand is developed with 19 pressure sensing taxels. The taxels are read wirelessly using a single ‘hand-shaped’ RFID antenna. Each RFID tag is transformed into a pressure sensor by disconnecting the RFID chip from its antenna and embedding the chip and antenna into soft elastomer with an air gap introduced between the RFID chip and its antenna. When a pressure event occurs, the RFID chip contacts its antenna and receives power and communicates with the RFID reader. Thus, the sensor is transformed into a biomimetic event-based sensor, whose response is activated only when used. Further, this work demonstrates the feasibility of constructing event-based, passive sensing grids that can be read wirelessly. Future tactile sensing e-skins can utilize this approach to become scalable and dense, while retaining high temporal resolution. Moreover, this approach can be applied beyond tactile sensing, for the development of scalable and high-density sensors of any modality. 
    more » « less