skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chemical imaging reveals diverse functions of tricarboxylic acid metabolites in root growth and development
Abstract Understanding how plants grow is critical for agriculture and fundamental for illuminating principles of multicellular development. Here, we apply desorption electrospray ionization mass spectrometry imaging (DESI-MSI) to the chemical mapping of the developing maize root. This technique reveals a range of small molecule distribution patterns across the gradient of stem cell differentiation in the root. To understand the developmental logic of these patterns, we examine tricarboxylic acid (TCA) cycle metabolites. In both Arabidopsis and maize, we find evidence that elements of the TCA cycle are enriched in developmentally opposing regions. We find that these metabolites, particularly succinate, aconitate, citrate, and α-ketoglutarate, control root development in diverse and distinct ways. Critically, the developmental effects of certain TCA metabolites on stem cell behavior do not correlate with changes in ATP production. These results present insights into development and suggest practical means for controlling plant growth.  more » « less
Award ID(s):
2028649
PAR ID:
10411434
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dubrovsky, Joseph (Ed.)
    Abstract A fundamental question in developmental biology is how the progeny of stem cells become differentiated tissues. The Arabidopsis root is a tractable model to address this question due to its simple organization and defined cell lineages. In particular, the zone of dividing cells at the root tip—the root apical meristem—presents an opportunity to map the gene regulatory networks underlying stem cell niche maintenance, tissue patterning, and cell identity acquisition. To identify molecular regulators of these processes, studies over the last 20 years employed global profiling of gene expression patterns. However, these technologies are prone to information loss due to averaging gene expression signatures over multiple cell types and/or developmental stages. Recently developed high-throughput methods to profile gene expression at single-cell resolution have been successfully applied to plants. Here, we review insights from the first published single-cell mRNA sequencing and chromatin accessibility datasets generated from Arabidopsis roots. These studies successfully reconstruct developmental trajectories, phenotype cell identity mutants at unprecedented resolution, and reveal cell type-specific responses to environmental stimuli. The experimental insight gained from Arabidopsis paves the way to profile roots from additional species. 
    more » « less
  2. SUMMARY Stem cells in plant shoots are a rare population of cells that produce leaves, fruits and seeds, vital sources for food and bioethanol. Uncovering regulators expressed in these stem cells will inform crop engineering to boost productivity. Single-cell analysis is a powerful tool for identifying regulators expressed in specific groups of cells. However, accessing plant shoot stem cells is challenging. Recent single-cell analyses of plant shoots have not captured these cells, and failed to detect stem cell regulators likeCLAVATA3andWUSCHEL. In this study, we finely dissected stem cell-enriched shoot tissues from both maize and arabidopsis for single-cell RNA-seq profiling. We optimized protocols to efficiently recover thousands ofCLAVATA3andWUSCHELexpressed cells. A cross-species comparison identified conserved stem cell regulators between maize and arabidopsis. We also performed single-cell RNA-seq on maize stem cell overproliferation mutants to find additional candidate regulators. Expression of candidate stem cell genes was validated using spatial transcriptomics, and we functionally confirmed roles in shoot development. These candidates include a family of ribosome-associated RNA-binding proteins, and two families of sugar kinase genes related to hypoxia signaling and cytokinin hormone homeostasis. These large-scale single-cell profiling of stem cells provide a resource for mining stem cell regulators, which show significant association with yield traits. Overall, our discoveries advance the understanding of shoot development and open avenues for manipulating diverse crops to enhance food and energy security. 
    more » « less
  3. Abstract Structural variation in plant genomes is a significant driver of phenotypic variability in traits important for the domestication and productivity of crop species. Among these are traits that depend on functional meristems, populations of stem cells maintained by the CLAVATA-WUSCHEL (CLV-WUS) negative feedback-loop that controls the expression of the WUS homeobox transcription factor. WUS function and impact on maize development and yield remain largely unexplored. Here we show that the maize dominantBarren inflorescence3(Bif3) mutant harbors a tandem duplicated copy of theZmWUS1gene,ZmWUS1-B, whose novel promoter enhances transcription in a ring-like pattern. Overexpression ofZmWUS1-Bis due to multimerized binding sites for type-B RESPONSE REGULATORs (RRs), key transcription factors in cytokinin signaling. Hypersensitivity to cytokinin causes stem cell overproliferation and major rearrangements ofBif3inflorescence meristems, leading to the formation of ball-shaped ears and severely affecting productivity. These findings establishZmWUS1as an essential meristem size regulator in maize and highlight the striking effect of cis-regulatory variation on a key developmental program. 
    more » « less
  4. null (Ed.)
    Plants maintain populations of pluripotent stem cells in shoot apical meristems (SAMs), which continuously produce new aboveground organs. We used single-cell RNA sequencing (scRNA-seq) to achieve an unbiased characterization of the transcriptional landscape of the maize shoot stem-cell niche and its differentiating cellular descendants. Stem cells housed in the SAM tip are engaged in genome integrity maintenance and exhibit a low rate of cell division, consistent with their contributions to germline and somatic cell fates. Surprisingly, we find no evidence for a canonical stem-cell organizing center subtending these cells. In addition, trajectory inference was used to trace the gene expression changes that accompany cell differentiation, revealing that ectopic expression of KNOTTED1 ( KN1 ) accelerates cell differentiation and promotes development of the sheathing maize leaf base. These single-cell transcriptomic analyses of the shoot apex yield insight into the processes of stem-cell function and cell-fate acquisition in the maize seedling and provide a valuable scaffold on which to better dissect the genetic control of plant shoot morphogenesis at the cellular level. 
    more » « less
  5. Abstract BackgroundAlthough there have been numerous studies describing plant growth systems for root exudate collection, a common limitation is that these systems require disruption of the plant root system to facilitate exudate collection. Here, we present a newly designed semi-hydroponic system that uses glass beads as solid support to simulate soil impedance, which combined with drip irrigation, facilitates growth of healthy maize plants, collection and analysis of root exudates, and phenotyping of the roots with minimal growth disturbance or root damage. ResultsThis system was used to collect root exudates from seven maize genotypes using water or 1 mM CaCl2, and to measure root phenotype data using standard methods and the Digital imaging of root traits (DIRT) software. LC–MS/MS (Liquid Chromatography—Tandem Mass Spectrometry) and GC–MS (Gas Chromatography—Mass Spectrometry) targeted metabolomics platforms were used to detect and quantify metabolites in the root exudates. Phytohormones, some of which are reported in maize root exudates for the first time, the benzoxazinoid DIMBOA (2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one), amino acids, and sugars were detected and quantified. After validating the methodology using known concentrations of standards for the targeted compounds, we found that the choice of the exudate collection solution affected the exudation and analysis of a subset of analyzed metabolites. No differences between collection in water or CaCl2were found for phytohormones and sugars. In contrast, the amino acids were more concentrated when water was used as the exudate collection solution. The collection in CaCl2required a clean-up step before MS analysis which was found to interfere with the detection of a subset of the amino acids. Finally, using the phenotypic measurements and the metabolite data, significant differences between genotypes were found and correlations between metabolites and phenotypic traits were identified. ConclusionsA new plant growth system combining glass beads supported hydroponics with semi-automated drip irrigation of sterile solutions was implemented to grow maize plants and collect root exudates without disturbing or damaging the roots. The validated targeted exudate metabolomics platform combined with root phenotyping provides a powerful tool to link plant root and exudate phenotypes to genotype and study the natural variation of plant populations. 
    more » « less