skip to main content


Title: Shared Arctic Variable Framework Links Local to Global Observing System Priorities and Requirements
The geographic settings and interests of diverse groups of rights- and stakeholders figure prominently in the need for internationally coordinated Arctic observing systems. Global and regional observing systems exist to coordinate observations across sectors and national boundaries, leveraging limited resources into widely available observational data and information products. Observing system design and coordination approaches developed for more focused networks at mid- and low latitudes are not necessarily directly applicable in more complex Arctic settings. Requirements for the latter are more demanding because of a greater need for cross-disciplinary and cross-sectoral prioritization and refinement from the local to the pan-Arctic scale, in order to maximize the use of resources in challenging environmental settings. Consideration of Arctic Indigenous Peoples’s observing priorities and needs has emerged as a core tenet of governance and coordination frameworks. We evaluate several different types of observing systems relative to the needs of the Arctic observing community and information users to identify the strengths and weaknesses of each framework. A typology of three approaches emerges from this assessment: “essential variable,” “station model,” and “central question.” We define and assess, against the requirements of Arctic settings, the concept of shared Arctic variables (SAVs) emerging from the Arctic Observing Summit 2020 and prior work by the Sustaining Arctic Observing Networks Road Mapping Task Force. SAVs represent measurable phenomena or processes that are important enough to multiple communities and sectors to make the effort to coordinate observation efforts worthwhile. SAVs align with essential variables as defined, for example, by global observing frameworks, in that they guide coordinated observations across processes that are of interest to multiple sectors. SAVs are responsive to the information needs of Arctic Indigenous Peoples and draw on their capacity to codesign and comanage observing efforts. SAVs are also tailored to accommodate the logistical challenges of Arctic operations and address unique aspects of the Arctic environment, such as the central role of the cryosphere. Specific examples illustrate the flexibility of the SAV framework in reconciling different observational approaches and standards such that the strengths of global and regional observing programs can be adapted to the complex Arctic environment.  more » « less
Award ID(s):
1936805
NSF-PAR ID:
10411547
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ARCTIC
Volume:
74
Issue:
5
ISSN:
0004-0843
Page Range / eLocation ID:
69 to 86
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Arctic observing and data systems have been widely recognized as critical infrastructures to support decision making and understanding across sectors in the Arctic and globally. Yet due to broad and persistent issues related to coordination, deployment infrastructure and technology gaps, the Arctic remains among the most poorly observed regions on the planet from the standpoint of conventional observing systems. Sustaining Arctic Observing Networks (SAON) was initiated in 2011 to address the persistent shortcomings in the coordination of Arctic observations that are maintained by its many national and organizational partners. SAON set forth a bold vision in its 2018 – 28 strategic plan to develop a roadmap for Arctic observing and data systems (ROADS) to specifically address a key gap in coordination efforts—the current lack of a systematic planning mechanism to develop and link observing and data system requirements and implementation strategies in the Arctic region. This coordination gap has hampered partnership development and investments toward improved observing and data systems. ROADS seeks to address this shortcoming through generating a systems-level view of observing requirements and implementation strategies across SAON’s many partners through its roadmap. A critical success factor for ROADS is equitable participation of Arctic Indigenous Peoples in the design and development process, starting at the process design stage to build needed equity. ROADS is both a comprehensive concept, building from a societal benefit assessment approach, and one that can proceed step-wise so that the most imperative Arctic observations—here described as shared Arctic variables (SAVs)—can be rapidly improved. SAVs will be identified through rigorous assessment at the beginning of the ROADS process, with an emphasis in that assessment on increasing shared benefit of proposed system improvements across a range of partnerships from local to global scales. The success of the ROADS process will ultimately be measured by the realization of concrete investments in and well-structured partnerships for the improved sustainment of Arctic observing and data systems in support of societal benefit. 
    more » « less
  2. Rapid Arctic environmental change requires improved collaboration across observing activities that support adaptation and response from local to pan-Arctic scales. The Research Networking Activities in Support of Sustained Coordinated Observations of Arctic Change (RNA CoOBs), in partnership with the Food Security Working Group (FSWG), supports an Indigenous-led project on food security. These efforts tie into the broader goals of the Sustaining Arctic Observing Networks (SAON) Roadmap for Arctic Observing and Data Systems (ROADS). SAON is an open initiative of the International Arctic Science Committee and the Arctic Council, uniting Arctic and non-Arctic countries and Indigenous, regional, and global organizations that support improved observing network development and integration. SAON has been advancing a partnership development framework under ROADS that adds value to different observing activities by providing common context and identifying shared goals. 
    more » « less
  3. With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore cross-cutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge. The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system scientific research and provide an important foundation for advancing multiscale modeling capabilities in the Arctic. 
    more » « less
  4. To remain competitive in the global economy, the United States needs skilled technical workers in occupations requiring a high level of domain-specific technical knowledge to meet the country’s anticipated shortage of 5 million technically-credentialed workers. The changing demographics of the country are of increasing importance to addressing this workforce challenge. According to federal data, half the students earning a certificate in 2016-17 received credentials from community colleges where the percent enrollment of Latinx (a gender-neutral term referencing Latin American cultural or racial identity) students (56%) exceeds that of other post-secondary sectors. If this enrollment rate persists, then by 2050 over 25% of all students enrolled in higher education will be Latinx. Hispanic Serving Institutions (HSIs) are essential points of access as they enroll 64% of all Latinx college students, and nearly 50% of all HSIs are 2-year institutions. Census estimates predict Latinxs are the fastest-growing segment reaching 30% of the U.S. population while becoming the youngest group comprising 33.5% of those under 18 years by 2060. The demand for skilled workers in STEM fields will be met when workers reflect the diversity of the population, therefore more students—of all ages and backgrounds—must be brought into community colleges and supported through graduation: a central focus of community colleges everywhere. While Latinx students of color are as likely as white students to major in STEM, their completion numbers drop dramatically: Latinx students often have distinct needs that evolved from a history of discrimination in the educational system. HSI ATE Hub is a three-year collaborative research project funded by the National Science Foundation Advanced Technological Education Program (NSF ATE) being implemented by Florence Darlington Technical College and Science Foundation Arizona Center for STEM at Arizona State University to address the imperative that 2-year Hispanic Serving Institutions (HSIs) develop and improve engineering technology and related technician education programs in a way that is culturally inclusive. Interventions focus on strengthening grant-writing skills among CC HSIs to fund advancements in technician education and connecting 2-year HSIs with resources for faculty development and program improvement. A mixed methods approach will explore the following research questions: 1) What are the unique barriers and challenges for 2-year HSIs related to STEM program development and grant-writing endeavors? 2) How do we build capacity at 2-year HSIs to address these barriers and challenges? 3) How do mentoring efforts/styles need to differ? 4) How do existing ATE resources need to be augmented to better serve 2-year HSIs? 5) How do proposal submission and success rates compare for 2-year HSIs that have gone through the KS STEM planning process but not M-C, through the M-C cohort mentoring process but not KS, and through both interventions? The project will identify HSI-relevant resources, augment existing ATE resources, and create new ones to support 2-year HSI faculty as potential ATE grantees. To address the distinct needs of Latinx students in STEM, resources representing best practices and frameworks for cultural inclusivity, as well as faculty development will be included. Throughout, the community-based tradition of the ATE Program is being fostered with particular emphasis on forming, nurturing, and serving participating 2-year HSIs. This paper will discuss the need, baseline data, and early results for the three-year program, setting the stage for a series of annual papers that report new findings. 
    more » « less
  5. To remain competitive in the global economy, the United States needs skilled technical workers in occupations requiring a high level of domain-specific technical knowledge to meet the country’s anticipated shortage of 5 million technically-credentialed workers. The changing demographics of the country are of increasing importance to addressing this workforce challenge. According to federal data, half the students earning a certificate in 2016-17 received credentials from community colleges where the percent enrollment of Latinx (a gender-neutral term referencing Latin American cultural or racial identity) students (56%) exceeds that of other post-secondary sectors. If this enrollment rate persists, then by 2050 over 25% of all students enrolled in higher education will be Latinx. Hispanic Serving Institutions (HSIs) are essential points of access as they enroll 64% of all Latinx college students, and nearly 50% of all HSIs are 2-year institutions. Census estimates predict Latinxs are the fastest-growing segment reaching 30% of the U.S. population while becoming the youngest group comprising 33.5% of those under 18 years by 2060. The demand for skilled workers in STEM fields will be met when workers reflect the diversity of the population, therefore more students—of all ages and backgrounds—must be brought into community colleges and supported through graduation: a central focus of community colleges everywhere. While Latinx students of color are as likely as white students to major in STEM, their completion numbers drop dramatically: Latinx students often have distinct needs that evolved from a history of discrimination in the educational system. HSI ATE Hub is a three-year collaborative research project funded by the National Science Foundation Advanced Technological Education Program (NSF ATE) being implemented by Florence Darlington Technical College and Science Foundation Arizona Center for STEM at Arizona State University to address the imperative that 2-year Hispanic Serving Institutions (HSIs) develop and improve engineering technology and related technician education programs in a way that is culturally inclusive. Interventions focus on strengthening grant-writing skills among CC HSIs to fund advancements in technician education and connecting 2-year HSIs with resources for faculty development and program improvement. A mixed methods approach will explore the following research questions: 1) What are the unique barriers and challenges for 2-year HSIs related to STEM program development and grant-writing endeavors? 2) How do we build capacity at 2-year HSIs to address these barriers and challenges? 3) How do mentoring efforts/styles need to differ? 4) How do existing ATE resources need to be augmented to better serve 2-year HSIs? 5) How do proposal submission and success rates compare for 2-year HSIs that have gone through the KS STEM planning process but not M-C, through the M-C cohort mentoring process but not KS, and through both interventions? The project will identify HSI-relevant resources, augment existing ATE resources, and create new ones to support 2-year HSI faculty as potential ATE grantees. To address the distinct needs of Latinx students in STEM, resources representing best practices and frameworks for cultural inclusivity, as well as faculty development will be included. Throughout, the community-based tradition of the ATE Program is being fostered with particular emphasis on forming, nurturing, and serving participating 2-year HSIs. This paper will discuss the need, baseline data, and early results for the three-year program, setting the stage for a series of annual papers that report new findings. 
    more » « less