Graphene and graphene oxide have shown good antibacterial activity against different bacterial species due to their unique physicochemical properties. Graphene oxide (GO) has been widely used to load metallic and metal oxide nanoparticles (NPs) to minimize their surface energy during processing and preparation, hence reducing their aggregation. In this work, GO was effectively synthesized and coated with different concentrations of zinc hydroxide Zn (OH)x using the precipitation method to prepare a GO/Zn (OH)x hybrid composite. The Zn (OH)x NPs and GO/Zn (OH)x nanocomposites were synthesized and characterized using various methods such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Coating GO with Zn (OH)x NPs resulted in improved aggregation of Zn (OH)x NPs as well as enhanced antibacterial activity of GO against Gram-positive and Gram-negative bacteria. Additionally, the effect of Zn (OH)x coating on the antibacterial properties of the GO/Zn (OH)x composite was systematically investigated. The synergistic effects of GO and Zn (OH)x NPs resulted in enhanced antibacterial properties of the composites compared to the pristine GO material. In addition, increasing the Zn (OH)x wt. % concentration led to an increased inhibition zone of the GO/Zn (H)x composite against Bacillus megaterium and E. coli bacteria.
more »
« less
Graphene Oxide-Hybridized Waterborne Epoxy Coating for Simultaneous Anticorrosive and Antibiofilm Functions
Multifunctional coatings with simultaneous antibacterial and anticorrosive properties are essential for marine environments, oil and gas industry, medical settings, and domestic/public appliances to preserve integrity and functionality of pipes, instruments, and surfaces. In this work, we developed a simple and effective method to prepare graphene oxide (GO)-hybridized waterborne epoxy (GOWE) coating to simultaneously improve anticorrosive and antibacterial properties . The effects of different GO filler ratios (0.05, 0.1, and 0.5, 1 wt%) on the electrochemical and antibacterial behaviors of the waterborne epoxy coating were investigated over short- and long-term periods. The electrochemical behavior was analyzed with salt solution for 64 days. The antibacterial effect of GOWE coating was evaluated with Shewanella oneidensis (MR-1), which is a microorganism that can be involved in corrosion. Our results revealed that concentrations as low as 0.1 wt% of the GO was effective performance than the waterborne epoxy coating without graphene oxide. This result is due to the high hydrophilicity of the graphene oxide fillers, which allowed great dispersion in the waterborne epoxy coating matrix. Furthermore, this study used a corrosion relevant bacterium as a model organism, that is, Shewanella oneidensis (MR-1), which is more relevant for real-word applications. This as-prepared GO-hybridized waterborne polymeric hybrid film provides new insight into the application of 2D nanomaterial polymer composites for simultaneous anticorrosive and antibacterial applications.
more »
« less
- Award ID(s):
- 1904472
- PAR ID:
- 10411718
- Date Published:
- Journal Name:
- Frontiers in Materials
- Volume:
- 9
- ISSN:
- 2296-8016
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Engineered nanoparticles are incorporated into numerous emerging technologies because of their unique physical and chemical properties. Many of these properties facilitate novel interactions, including both intentional and accidental effects on biological systems. Silver-containing particles are widely used as antimicrobial agents and recent evidence indicates that bacteria rapidly become resistant to these nanoparticles. Much less studied is the chronic exposure of bacteria to particles that were not designed to interact with microorganisms. For example, previous work has demonstrated that the lithium intercalated battery cathode nanosheet, nickel manganese cobalt oxide (NMC), is cytotoxic and causes a significant delay in growth of Shewanella oneidensis MR-1 upon acute exposure. Here, we report that S. oneidensis MR-1 rapidly adapts to chronic NMC exposure and is subsequently able to survive in much higher concentrations of these particles, providing the first evidence of permanent bacterial resistance following exposure to nanoparticles that were not intended as antibacterial agents. We also found that when NMC-adapted bacteria were subjected to only the metal ions released from this material, their specific growth rates were higher than when exposed to the nanoparticle. As such, we provide here the first demonstration of bacterial resistance to complex metal oxide nanoparticles with an adaptation mechanism that cannot be fully explained by multi-metal adaptation. Importantly, this adaptation persists even after the organism has been grown in pristine media for multiple generations, indicating that S. oneidensis MR-1 has developed permanent resistance to NMC.more » « less
-
This study provides new insights into the development of high-performance MXene-reinforced coatings to strengthen polymeric nanocomposites by enhancing microstructure, anti-aging properties, corrosion resistance, and robustness. MXene nanoparticles, labeled 25C and 80C, were synthesized using two different methods and incorporated at concentrations ranging from 0.1 to 2.0 wt.% into epoxy composites. The results demonstrated that 80C MXene, characterized by its finer morphology and superior dispersion, significantly improved the composite's performance compared to 25C. Electrochemical Impedance Spectroscopy (EIS) tests, along with long-term exposure assessments, suggested that incorporating both types of MXene nanoparticles enhances the corrosion protection performance of epoxy coatings over time. Micro-CT analysis revealed that both types of MXene substantially reduced defects and voids in the polymeric matrix, resulting in enhanced protective performance. This void reduction confirms that the incorporation of both 25C and 80C MXene improves microstructural integrity by filling voids and creating a more continuous, uniform structure, particularly in samples with 0.1% to 1.0% MXene flakes. The findings also highlighted MXene's potential in modifying the anti-aging properties of epoxy by inhibiting free radical generation and enhancing the composite's resistance against corrosion. Both 25C and 80C MXene-epoxy groups exhibited a clear trend of diminishing free radical intensity with increasing MXene concentration up to 1.0%, with free radical intensity reduced by over 40% compared to neat epoxy. The relationship between MXene concentration and reinforcement was also investigated, revealing superior corrosion protection properties at concentrations of 0.5-1.0 wt.%. This research offers a profound understanding of MXene's potential in polymer-based composites, laying a foundation for future investigations aimed at utilizing MXene to achieve superior material properties for a wide range of applications, particularly in the realm of metallic surface protection.more » « less
-
Lithium intercalation compounds, such as the complex metal oxide, lithium nickel manganese cobalt oxide (LiNi x Mn y Co 1−x−y O 2 , herein referred to as NMC), have demonstrated their utility as energy storage materials. In response to recent concerns about the global supply of cobalt, industrially synthesized NMCs are shifting toward using NMC compositions with enriched nickel content. However, nickel is one of the more toxic components of NMC materials, meriting investigation of the toxicity of these materials on environmentally relevant organisms. Herein, the toxicity of both nanoscale and microscale Ni-enriched NMCs to the bacterium, Shewanella oneidensis MR-1, and the zooplankton, Daphnia magna , was assessed. Unexpectedly, for the bacteria, all NMC materials exhibited similar toxicity when used at equal surface area-based doses, despite the different nickel content in each. Material dissolution to toxic species, namely nickel and cobalt ions, was therefore modelled using a combined density functional theory and thermodynamics approach, which showed an increase in material stability due to the Ni-enriched material containing nickel with an oxidation state >2. The increased stability of this material means that similar dissolution is expected between Ni-enriched NMC and equistoichiometric NMC, which is what was found in experiments. For S. oneidensis , the toxicity of the released ions recapitulated toxicity of NMC nanoparticles. For D. magna , nickel enrichment increased the observed toxicity of NMC, but this toxicity was not due to ion release. Association of the NMC was observed with both S. oneidensis and D. magna. This work demonstrates that for organisms where the major mode of toxicity is based on ion release, including more nickel in NMC does not impact toxicity due to increased particle stability; however, for organisms where the core composition dictates the toxicity, including more nickel in the redesign strategy may lead to greater toxicity due to nanoparticle-specific impacts on the organism.more » « less
-
Graphene oxide (GO), a derivative of graphene, has attracted significant attention in tribological applications due to its unique structural, mechanical, and chemical properties. This review highlights the influence of GO and its composites on friction and wear performance across various engineering systems. The paper explores GO’s key properties, such as its high surface area, layered morphology, and abundant functional groups. These features contribute to reduced shear resistance, tribofilm formation, and improved load-bearing capacity. A detailed analysis of GO-based composites, including polymer, metal, and ceramic matrices, reveals those small additions of GO (typically 0.1–2 wt%) result in substantial reductions in coefficient of friction and wear rate, with improvements ranging between 30–70%, depending on the application. The tribological mechanisms, including self-lubrication, dispersion, thermal stability, and interface interactions, are discussed to provide insights into performance enhancement. Furthermore, the effects of electrochemical environment, functional group modifications, and external loading conditions on GO’s tribological behavior are examined. Despite these advantages, challenges such as scalability, agglomeration, and material compatibility persist. Overall, the paper demonstrates that GO is a promising additive for advanced tribological systems, while also identifying key limitations and future research directions.more » « less
An official website of the United States government

