skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Long‐Distance/Time Surf‐Zone Tracer Evolution Affected by Inner‐Shelf Tracer Retention and Recirculation
Award ID(s):
1924005 1923941
PAR ID:
10411722
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
126
Issue:
12
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present 3MileBeach, a tracing and fault injection platform designed for microservice-based architectures. 3Mile-Beach interposes on the message serialization libraries that are ubiquitous in this environment, avoiding the application code instrumentation that tracing and fault injection infrastructures typically require. 3MileBeach provides message-level distributed tracing at less than 50% of the overhead of the state-of-the-art tracing frameworks, and fault injection that allows higher precision experiments than existing solutions. We measure the overhead of 3MileBeach as a tracer and its efficacy as a fault injector. We qualitatively measure its promise as a platform for tuning and debugging by sharing concrete use cases in the context of bottleneck identification, performance tuning, and bug finding. Finally, we use 3MileBeach to perform a novel type of fault injection - Temporal Fault Injection (TFI), which more precisely controls individual inter-service message flow with temporal prerequisites, and makes it possible to catch an entirely new class of fault tolerance bugs. 
    more » « less
  2. One of the challenges of analyzing convective cell properties is quick evolution of the individual convective cells.  While the operational radar data provide great a data set to analyze the evolution of radar observables of convective precipitation clouds statistically, previous studies also suggested that, because of the quick evolution of cell life cycle, conventional radar volume scan strategies taking ~5-7 minutes might not capture the detailed evolution. The TRACER campaign deployed CSAPR2, which performed frequent update of RHI and sector PPI scans to track convective cells every < 2 minutes guided by a new cell-tracking framework, Multisensor Agile Adaptive Sampling (MAAS; Kollias et al. 2020). This allows for capturing fast-evolving radar observables. The submitted data files are CSAPR2 data in CfRadial format collected during the TRACER field campaign from June to September 2020. The data files include processed radar variables including: noise-masked reflectivity and differential reflectivity corrected for rain attenuation and systematic biases, noise-masked dealiased radial velocity, specific differential phase, locations of target cells (latitude, longitude, radar range), and radar-echo classification.   
    more » « less
  3. Abstract Quantifying the width of the tropics has important implications for understanding climate variability and the atmospheric response to anthropogenic forcing. Considerable effort has been placed on quantifying the width of the tropics at tropospheric levels, but substantially less effort has been placed on quantifying the width at stratospheric levels. Here we probe tropical width in the stratosphere using chemical tracers, which are accessible by direct measurement. Two new tracer‐based width metrics are developed, denoted here as the “1σ method” and the gradient weighted latitude (GWL) method. We evaluate widths from three tracers, CH4, N2O, and SF6. We demonstrate that unlike previously proposed stratospheric width methods using tracers, these metrics perform consistently throughout the depth of the stratosphere, at all times of year and on coarse temporal data. The GWL tracer‐based widths correlate well with the turnaround latitude and the critical level, where wave dissipation occurs, in the upper and midstratosphere during certain months of the year. In the lower stratosphere, the deseasonalized tracer‐based widths near the tropical tropopause correlate with the deseasonalized tropopause‐height based metrics. We also find that tracer‐tracer width correlations are strongest at pressure levels where their chemical lifetimes are similar. These metrics represent another useful way to estimate stratospheric tropical width and explore any changes under anthropogenic forcing. 
    more » « less