skip to main content


Title: High-order harmonic generation from a thin film crystal perturbed by a quasi-static terahertz field
Abstract

Studies of laser-driven strong field processes subjected to a (quasi-)static field have been mainly confined to theory. Here we provide an experimental realization by introducing a bichromatic approach for high harmonic generation (HHG) in a dielectric that combines an intense 70 femtosecond duration mid-infrared driving field with a weak 2 picosecond period terahertz (THz) dressing field. We address the physics underlying the THz field induced static symmetry breaking and its consequences on the efficient production/suppression of even-/odd-order harmonics, and demonstrate the ability to probe the HHG dynamics via the modulation of the harmonic distribution. Moreover, we report a delay-dependent even-order harmonic frequency shift that is proportional to the time derivative of the THz field. This suggests a limitation of the static symmetry breaking interpretation and implies that the resultant attosecond bursts are aperiodic, thus providing a frequency domain probe of attosecond transients while opening opportunities in precise attosecond pulse shaping.

 
more » « less
NSF-PAR ID:
10411759
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BACKGROUND Electromagnetic (EM) waves underpin modern society in profound ways. They are used to carry information, enabling broadcast radio and television, mobile telecommunications, and ubiquitous access to data networks through Wi-Fi and form the backbone of our modern broadband internet through optical fibers. In fundamental physics, EM waves serve as an invaluable tool to probe objects from cosmic to atomic scales. For example, the Laser Interferometer Gravitational-Wave Observatory and atomic clocks, which are some of the most precise human-made instruments in the world, rely on EM waves to reach unprecedented accuracies. This has motivated decades of research to develop coherent EM sources over broad spectral ranges with impressive results: Frequencies in the range of tens of gigahertz (radio and microwave regimes) can readily be generated by electronic oscillators. Resonant tunneling diodes enable the generation of millimeter (mm) and terahertz (THz) waves, which span from tens of gigahertz to a few terahertz. At even higher frequencies, up to the petahertz level, which are usually defined as optical frequencies, coherent waves can be generated by solid-state and gas lasers. However, these approaches often suffer from narrow spectral bandwidths, because they usually rely on well-defined energy states of specific materials, which results in a rather limited spectral coverage. To overcome this limitation, nonlinear frequency-mixing strategies have been developed. These approaches shift the complexity from the EM source to nonresonant-based material effects. Particularly in the optical regime, a wealth of materials exist that support effects that are suitable for frequency mixing. Over the past two decades, the idea of manipulating these materials to form guiding structures (waveguides) has provided improvements in efficiency, miniaturization, and production scale and cost and has been widely implemented for diverse applications. ADVANCES Lithium niobate, a crystal that was first grown in 1949, is a particularly attractive photonic material for frequency mixing because of its favorable material properties. Bulk lithium niobate crystals and weakly confining waveguides have been used for decades for accessing different parts of the EM spectrum, from gigahertz to petahertz frequencies. Now, this material is experiencing renewed interest owing to the commercial availability of thin-film lithium niobate (TFLN). This integrated photonic material platform enables tight mode confinement, which results in frequency-mixing efficiency improvements by orders of magnitude while at the same time offering additional degrees of freedom for engineering the optical properties by using approaches such as dispersion engineering. Importantly, the large refractive index contrast of TFLN enables, for the first time, the realization of lithium niobate–based photonic integrated circuits on a wafer scale. OUTLOOK The broad spectral coverage, ultralow power requirements, and flexibilities of lithium niobate photonics in EM wave generation provides a large toolset to explore new device functionalities. Furthermore, the adoption of lithium niobate–integrated photonics in foundries is a promising approach to miniaturize essential bench-top optical systems using wafer scale production. Heterogeneous integration of active materials with lithium niobate has the potential to create integrated photonic circuits with rich functionalities. Applications such as high-speed communications, scalable quantum computing, artificial intelligence and neuromorphic computing, and compact optical clocks for satellites and precision sensing are expected to particularly benefit from these advances and provide a wealth of opportunities for commercial exploration. Also, bulk crystals and weakly confining waveguides in lithium niobate are expected to keep playing a crucial role in the near future because of their advantages in high-power and loss-sensitive quantum optics applications. As such, lithium niobate photonics holds great promise for unlocking the EM spectrum and reshaping information technologies for our society in the future. Lithium niobate spectral coverage. The EM spectral range and processes for generating EM frequencies when using lithium niobate (LN) for frequency mixing. AO, acousto-optic; AOM, acousto-optic modulation; χ (2) , second-order nonlinearity; χ (3) , third-order nonlinearity; EO, electro-optic; EOM, electro-optic modulation; HHG, high-harmonic generation; IR, infrared; OFC, optical frequency comb; OPO, optical paramedic oscillator; OR, optical rectification; SCG, supercontinuum generation; SHG, second-harmonic generation; UV, ultraviolet. 
    more » « less
  2. Abstract High harmonic generation (HHG) opens a window on the fundamental science of strong-field light-mater interaction and serves as a key building block for attosecond optics and metrology. Resonantly enhanced HHG from hot spots in nanostructures is an attractive route to overcoming the well-known limitations of gases and bulk solids. Here, we demonstrate a nanoscale platform for highly efficient HHG driven by intense mid-infrared laser pulses: an ultra-thin resonant gallium phosphide (GaP) metasurface. The wide bandgap and the lack of inversion symmetry of the GaP crystal enable the generation of even and odd harmonics covering a wide range of photon energies between 1.3 and 3 eV with minimal reabsorption. The resonantly enhanced conversion efficiency facilitates single-shot measurements that avoid material damage and pave the way to study the controllable transition between perturbative and non-perturbative regimes of light-matter interactions at the nanoscale. 
    more » « less
  3. High harmonic spectroscopy utilizes the extremely nonlinear optical process of high-order harmonic generation (HHG) to measure complex attosecond-scale dynamics within the emitting atom or molecule subject to a strong laser field. However, it can be difficult to compare theory and experiment, since the dynamics under investigation are often very sensitive to the laser intensity, which inevitably varies over the Gaussian profile of a typical laser beam. This discrepancy would usually be resolved by so-called macroscopic HHG simulations, but such methods almost always use a simplified model of the internal dynamics of the molecule, which is not necessarily applicable for high harmonic spectroscopy. In this Letter, we extend the existing framework of macroscopic HHG so that high-accuracyab initiocalculations can be used as the microscopic input. This new (to the best of our knowledge) approach is applied to a recent theoretical prediction involving the HHG spectra of open-shell molecules undergoing nonadiabatic dynamics. We demonstrate that the predicted features in the HHG spectrum unambiguously survive macroscopic response calculations, and furthermore they exhibit a nontrivial angular pattern in the far field.

     
    more » « less
  4. Attosecond pulses formed by high order harmonics (HHs) of an infrared (IR) laser field is a powerful tool for studying and controlling ultrafast dynamics of electrons in atoms, molecules and solids at its intrinsic time-scale. However, in the X-ray range the energy of attosecond pulses is rather limited. Their amplification is an important but very challenging problem since none of the existing amplifiers can support the corresponding PHz bandwidth. In our previous work [1] we proposed a method for the attosecond pulse amplification in hydrogen-like active medium of a recombination plasma-based X-ray laser dressed by a replica of the fundamental frequency IR field used for the HH generation. Due to the IRfield-induced sub-laser-cycle Stark shift and splitting of the lasing energy levels the gain of the active medium is redistributed over the combination frequencies, separated from the resonance by even multiples of the frequency of the IR field. If the incident HHs forming an attosecond pulse train are tuned in resonance with the induced gain lines and the active plasma medium is strongly dispersive for the modulating IR field, then during the amplification the relative phases of harmonics and (under the optimal choice of the IR field strength) the shape of the amplified pulses will be preserved. In the present work we show the possibility of boosting the efficiency of HH amplification by modulating the active medium of an X-ray laser with the second harmonic of the fundamental frequency IR field. We show that under the action of a laser field (with arbitrary frequency) the gain redistribution occurs not only over the even combination frequencies discussed in [1], but also over the odd frequencies separated from the resonance by odd multiples of the laser frequency. Besides, nearly half of the medium gain is contained in the even induced gain lines, and nearly half in the odd. If the modulating field is the second harmonic of the IR field, used for the generation the HHs and attosecond pulses, then the seeding HHs can be tuned in resonance with both even and odd gain lines simultaneously, which will make the overall gain much higher as compared to the previously considered case of the fundamental frequency modulating field (when only the even gain lines play the role). By the example of the C5+ X-ray laser with 3.38 nm wavelength of the inverted transition we show the possibility of increasing the efficiency of 430 as pulse amplification by 8.5 times when the active medium is modulated with the second harmonic of the fundamental frequency IR field with wavelength 2.1 µm. 
    more » « less
  5. High harmonic generation (HHG) makes it possible to measure spin and charge dynamics in materials on femtosecond to attosecond timescales. However, the extreme nonlinear nature of the high harmonic process means that intensity fluctuations can limit measurement sensitivity. Here we present a noise-canceled, tabletop high harmonic beamline for time-resolved reflection mode spectroscopy of magnetic materials. We use a reference spectrometer to independently normalize the intensity fluctuations of each harmonic order and eliminate long term drift, allowing us to make spectroscopic measurements near the shot noise limit. These improvements allow us to significantly reduce the integration time required for high signal-to-noise (SNR) measurements of element-specific spin dynamics. Looking forward, improvements in the HHG flux, optical coatings, and grating design can further reduce the acquisition time for high SNR measurements by 1–2 orders of magnitude, enabling dramatically improved sensitivity to spin, charge, and phonon dynamics in magnetic materials.

     
    more » « less