Abstract The global minima of urea and thiourea were characterized along with other low‐lying stationary points. Each structure was optimized with the CCSD(T) method and triple‐ζcorrelation consistent basis sets followed by harmonic vibrational frequency computations. Relative energies evaluated near the complete basis set limit with both canonical and explicitly correlated CCSD(T) techniques reveal several subtle but important details about both systems. These computations resolve a discrepancy by demonstrating that the electronic energy of the C2vsecond‐order saddle point of urea lies at least 1.5 kcal mol−1above the C2global minimum regardless of whether the structures were optimized with MP2, CCSD, or CCSD(T). Additionally, urea effectively has one minimum instead of two because the electronic barrier for inversion at one amino group in the Cslocal minimum vanishes at the CCSD(T) CBS limit. Characterization of both systems with the same ab initio methods and large basis sets conclusively establishes that the electronic barriers to inversion at one or both NH2groups in thiourea are appreciably smaller than in urea. CCSDT(Q)/cc‐pVTZ computations show higher‐order electron correlation effects have little impact on the relative energies and are consistently offset by core correlation effects of opposite sign and comparable magnitude.
more »
« less
Accurate Interaction Energies of CO 2 with the 20 Naturally Occurring Amino Acids
Abstract We have performed a series of highly accurate calculations between CO2and the 20 naturally occurring amino acids for the investigation of the attractive noncovalent interactions. Different nucleophilic groups present in the amino acid structures were considered (α‐NH2, COOH, side groups), and the stronger binding sites were identified. A database of accurate reference interactions energies was compiled as computed by explicitly‐correlated coupled‐cluster singles‐and‐doubles, together with perturbative triples extrapolated to the complete‐basis‐set limit. The CCSD(F12)(T)/CBS reference values were used for comparing a variety of popular density functionals with different basis sets. Our results show that most density functionals with the triple‐zeta basis set def2‐TZVPP align with the CCSD(F12)(T)/CBS reference values, but errors range from 0.1 kcal/mol up to 1.0 kcal/mol.
more »
« less
- Award ID(s):
- 2143354
- PAR ID:
- 10411764
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemPhysChem
- Volume:
- 24
- Issue:
- 13
- ISSN:
- 1439-4235
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Sulfur dioxide and hypohalous acids (HOX, X=F, Cl, Br, I) are ubiquitous molecules in the atmosphere that are central to important processes like seasonal ozone depletion, acid rain, and cloud nucleation. We present the first theoretical examination of the HOX⋯SO2binary complexes and the associated trends due to halogen substitution. Reliable geometries were optimized at the CCSD(T)/aug‐cc‐pV(T+d)Z level of theory for HOF and HOCl complexes. The HOBr and HOI complexes were optimized at the CCSD(T)/aug‐cc‐pV(D+d)Z level of theory with the exception of the Br and I atoms which were modeled with an aug‐cc‐pwCVDZ‐PP pseudopotential. 27 HOX⋯SO2complexes were characterized and the focal point method was employed to produce CCSDT(Q)/CBS interaction energies. Natural Bond Orbital analysis and Symmetry Adapted Perturbation Theory were used to classify the nature of each principle interaction. The interaction energies of all HOX⋯SO2complexes in this study ranged from 1.35 to 3.81 kcal mol−1. The single‐interaction hydrogen bonded complexes spanned a range of 2.62 to 3.07 kcal mol−1, while the single‐interaction halogen bonded complexes were far more sensitive to halogen substitution ranging from 1.35 to 3.06 kcal mol−1, indicating that the two types of interactions are extremely competitive for heavier halogens. Our results provide insight into the interactions between HOX and SO2which may guide further research of related systems.more » « less
-
The optimized geometries, vibrational frequencies, and dissociation energies from MP2 and CCSD(T) computations with large correlation consistent basis sets are reported for (H2S)2and H2O/H2S. Anharmonic vibrational frequencies have also been computed with second‐order vibrational perturbation theory (VPT2). As such, the fundamental frequencies, overtones, and combination bands reported in this study should also provide a useful road map for future spectroscopic studies of the simple but important heterogeneous H2O/H2S dimer in which the hydrogen bond donor and acceptor can interchange, leading to two unique minima with very similar energies. Near the CCSD(T) complete basis set limit, the HOH⋯SH2configuration (H2O donor) lies only 0.2 kcal mol−1below the HSH⋯OH2structure (H2S donor). When the zero‐point vibrational energy is included, however, the latter configuration becomes slightly lower in energy than the former by <0.1 kcal mol−1. © 2018 Wiley Periodicals, Inc.more » « less
-
Hypohalous acids (HOX) are a class of molecules that play a key role in the atmospheric seasonal depletion of ozone and have the ability to form both hydrogen and halogen bonds. The interactions between the HOX monomers (X = F, Cl, Br) and water have been studied at the CCSD(T)/aug-cc-pVTZ level of theory with the spin free X2C-1e method to account for scalar relativistic effects. Focal point analysis was used to determine CCSDT(Q)/CBS dissociation energies. The anti hydrogen bonded dimers were found with interaction energies of −5.62 kcal mol −1 , −5.56 kcal mol −1 , and −4.97 kcal mol −1 for X = F, Cl, and Br, respectively. The weaker halogen bonded dimers were found to have interaction energies of −1.71 kcal mol −1 and −3.03 kcal mol −1 for X = Cl and Br, respectively. Natural bond orbital analysis and symmetry adapted perturbation theory were used to discern the nature of the halogen and hydrogen bonds and trends due to halogen substitution. The halogen bonds were determined to be weaker than the analogous hydrogen bonds in all cases but close enough in energy to be relevant, significantly more so with increasing halogen size.more » « less
-
The many-body expansion (MBE) is promising for the efficient, parallel computation of lattice energies in organic crystals. Very high accuracy should be achievable by employing coupled-cluster singles, doubles, and perturbative triples at the complete basis set limit [CCSD(T)/CBS] for the dimers, trimers, and potentially tetramers resulting from the MBE, but such a brute-force approach seems impractical for crystals of all but the smallest molecules. Here, we investigate hybrid or multi-level approaches that employ CCSD(T)/CBS only for the closest dimers and trimers and utilize much faster methods like Møller–Plesset perturbation theory (MP2) for more distant dimers and trimers. For trimers, MP2 is supplemented with the Axilrod–Teller–Muto (ATM) model of three-body dispersion. MP2(+ATM) is shown to be a very effective replacement for CCSD(T)/CBS for all but the closest dimers and trimers. A limited investigation of tetramers using CCSD(T)/CBS suggests that the four-body contribution is entirely negligible. The large set of CCSD(T)/CBS dimer and trimer data should be valuable in benchmarking approximate methods for molecular crystals and allows us to see that a literature estimate of the core-valence contribution of the closest dimers to the lattice energy using just MP2 was overbinding by 0.5 kJ mol−1, and an estimate of the three-body contribution from the closest trimers using the T0 approximation in local CCSD(T) was underbinding by 0.7 kJ mol−1. Our CCSD(T)/CBS best estimate of the 0 K lattice energy is −54.01 kJ mol−1, compared to an estimated experimental value of −55.3 ± 2.2 kJ mol−1.more » « less