skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Observed and simulated characteristics of down-valley flow within stratiform precipitation over the Olympic Peninsula
Abstract Mid-latitude cyclones approaching coastal mountain ranges experience flow modifications on a variety of scales including orographic lift, blocking, mountain waves, and valley flows. During the 2015-16 Olympic Mountain Experiment (OLYMPEX), a pair of scanning ground radars observed precipitating clouds as they were modified by these orographically-induced flows. The DOW radar, positioned to scan up the windward Quinault Valley, conducted RHI scans during 285 hours of precipitation, 80% of which contained reversed, down-valley flow at lower levels. The existence of down-valley flow in the Quinault Valley was found to be well-correlated with upstream flow blocking and the large-scale sea-level pressure gradient orientated down the valley. Deep down-valley flow occurred in environments with high moist static stability and southerly winds, conditions which are common in pre-frontal sectors of midlatitude cyclones in the coastal Pacific Northwest. Finally, a case study of prolonged down-valley flow in a pre-frontal storm sector was simulated to investigate whether latent heat absorption (cooling) contributed to the event. Three experiments were conducted: a Control simulation and two simulations where the temperature tendencies from melting and evaporation were separately turned off. Results indicated that evaporative cooling had a stronger impact on the event’s down-valley flow than melting, likely because evaporation occurred within the low-level down-valley flow layer. Through these experiments, we show that evaporation helped prolong down-valley flow for several hours past the time of the event’s warm frontal passage.  more » « less
Award ID(s):
2042105 2113207
PAR ID:
10411823
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Monthly Weather Review
ISSN:
0027-0644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract High-resolution numerical model simulations of six different cases during the 2015/16 Olympic Mountains Experiment (OLYMPEX) are used to examine dynamic and microphysical precipitation processes on both the full barrier-scale and smaller sub-barrier-scale ridges and valleys. The degree to which stratiform precipitation within midlatitude cyclones is modified over the coastal Olympic Mountains range was found to be strongly dependent on the synoptic environment within a cyclone’s prefrontal and warm sectors. In prefrontal sectors, barrier-scale ascent over stably stratified flow resulted in enhanced ice production aloft at the coast and generally upstream of higher terrain. At low levels, stable flow orientated transverse to sub-barrier-scale windward ridges generated small-scale mountain waves, which failed to produce enough cloud water to appreciably enhance precipitation on the scale of the windward ridges. In moist-neutral warm sectors, the upstream side of the barrier exhibited broad ascent oriented along the windward ridges with lesser regions of adjacent downward motion. Significant quantities of cloud water were produced over coastal foothills with further production of cloud water on the lower-windward slopes. Ice production above the melting layer occurred directly over the barrier where the ice particles were further advected downstream by cross-barrier winds and spilled over into the lee. The coastal foothills were found to be essential for the production and maintenance of cloud water upstream of the primary topographic barrier, allowing additional time for hydrometeors to grow to precipitation size by autoconversion and collection before falling out on the lower-windward slopes. 
    more » « less
  2. Abstract Atmospheric flow of cold air over mountain barriers in the Alpine region often gives a rise to strong and gusty downslope wind, Bora. Such flows are often accompanied by atmospheric waves, generated by the flow passing an elevated barrier. Such phenomenon can only rarely be observed visually and can generally not be reliably reproduced by simplified numerical models. Orography‐induced atmospheric small‐scale waves were experimentally observed on 25 January 2019 during a Bora outbreak in the Vipava valley, Slovenia. A vertical scanning lidar, positioned at the lee side of the Trnovski gozd mountain and a fixed direction lidar, 5 km apart in the Vipava valley, were used to characterize the density field. The flow exhibited a stationary jump after the mountain ridge and, superimposed, an oscillatory flow pattern. High‐resolution numerical simulations complemented the observations and supported experimental results on the flow periodicity but also on the wave structures and propagation characteristics. 
    more » « less
  3. Abstract The Winter Precipitation Type Research Multiscale Experiment (WINTRE-MIX) was conducted during February–March 2022 to observe multiscale processes impacting the variability and predictability of precipitation type and amount under near-freezing conditions over the Saint Lawrence River valley. Intensive observation period (IOP) 4 of the campaign occurred 17–18 February 2022 in association with an upper-level trough positioned over the north-central United States and a surface cyclone that traversed the study domain along a frontal boundary that extended northeast of the cyclone. The timing of precipitation-type transitions during the event was consistently too slow within operational forecast models at 2–5-day lead times. Consequently, this study aims to understand how forecast model representations of dynamical and thermodynamical processes on the synoptic scale to mesoscale may have influenced the predictability of precipitation type during IOP4. To do so, an ensemble of operational forecasts from the Global Ensemble Forecast System initialized 5 days prior to IOP4 was divided into three clusters according to the strength and position of the frontal zone over the Saint Lawrence River Valley during the event. Ensemble sensitivity analyses and spatial composites suggest that differences in the position of the frontal zone between clusters are dynamically linked to the differences in the structure of the associated upstream upper-level trough at prior forecast lead times. A diagnosis of the divergent circulation prior to the event suggests that feedback mechanisms between the surface cyclone, its attendant frontal boundaries, and the upper-level flow pattern help to further explain differences in the frontal zone between clusters. Significance StatementMixed-phase precipitation events, which can produce rain, freezing rain, ice pellets, and snow, are difficult to accurately forecast. This study investigates the large-scale processes influencing our ability to accurately forecast the precipitation type and amount during one of these events that was observed by a field campaign in February 2022. In forecasts initialized 5 days prior to the event, differences in the forecast upper-level atmospheric conditions led to differences in the forecast interactions between the upper-level flow and a low pressure system at the surface. As a result, there was large uncertainty in the predicted position of a surface front associated with the low pressure system and the precipitation-type distribution during the event. 
    more » « less
  4. In this study, the Advanced Research Weather Research and Forecasting (WRF) model was adopted to investigate the mechanical and thermal forcing effects associated with the New Guinea Highland (NGH) on Madden-Julian Oscillation (MJO) propagation and rainfall formation and enhancement mechanisms over the island of New Guinea. Our results show that both forces affect the propagation of the MJO07-08, resulting in orographic rainfall production. Even though each forcing helps produce orographic rainfall, the mechanical forcing of the NGH plays a much larger role in the orographic blocking than the thermal forcing. We also found two flow regimes associated with the propagation of MJO07-08 over the NGH. First, in the flow-around regime, the MJO and its associated convective system split around the NGH due to the strong orographic blocking. We can observe this splitting when looking at the splitting stage. Second, the flow-over regime could occur when the mountain is lower than its original height or the flow has a smaller Froude number. A series of numerical experiments indicate that the maximum orographic rainfall increases with increased mountain height; however, the maximum orographic rain decreases when the flow transitions to the flow-around regime. Finally, some common ingredients for orographic rainfall associated with the MJO07-08 passing over the NGH are consistent with those found for tropical cyclones passing over mountains. 
    more » « less
  5. null (Ed.)
    Coastal Santa Barbara (SB) County in Southern California, characterized by a Mediterranean climate and complex topography, is a region prone to downslope windstorms that create critical fire weather conditions and rapidly spread wildfires. The Santa Ynez Mountains, oriented from east to west, rise abruptly from the coast, separating air masses from the ocean and the Santa Ynez Valley. The juxtaposition of these geographic features generates spatiotemporally variable wind regimes. This study analyzes diurnal-to-seasonal wind cycles and extremes in this region using hourly data from eight weather stations and four buoys for the period 1998–2019. Data from a vertical wind profiler at the Santa Barbara airport in Goleta, CA was extracted from August 2016 to September 2020. Air temperature, dew point temperature, and the Fosberg fire weather index are examined at land stations. We show that cycles in wind speed vary spatiotemporally; mountain (valley and coastal) stations exhibit a pronounced semiannual (annual) cycle, and wind maxima is observed during the evening (afternoon) at mountain (valley and coastal) stations. Differences in wind speed percentiles were evident among stations, particularly at and above the 75th percentile. Strong winds recorded at buoys were significantly correlated (between r = 0.3–0.5) to land stations. However, cross-correlational analysis did not reveal any temporal lags between mountain stations and buoys. Distributions of temperature and dew point during extreme winds differed between east and west mountain stations. Significant fire weather conditions were most frequent at mountain stations in Refugio and Montecito, with 5% occurrence in the spring and over 3% occurrence in fall. Weaker summertime winds lowered fire weather conditions at Montecito in the summer 
    more » « less