skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Cubic Regularization Approach for Finding Local Minimax Points in Nonconvex Minimax Optimization
Award ID(s):
2106216 2134223
PAR ID:
10411846
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Transactions on machine learning research
ISSN:
2835-8856
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Banerjee, A; Fukumizu, K (Ed.)
    We present a novel off-policy loss function for learning a transition model in model-based reinforcement learning. Notably, our loss is derived from the off-policy policy evaluation objective with an emphasis on correcting distribution shift. Compared to previous model-based techniques, our approach allows for greater robustness under model mis-specification or distribution shift induced by learning/evaluating policies that are distinct from the data-generating policy. We provide a theoretical analysis and show empirical improvements over existing model-based off-policy evaluation methods. We provide further analysis showing our loss can be used for off-policy optimization (OPO) and demonstrate its integration with more recent improvements in OPO. 
    more » « less
  2. Location estimation is one of the most basic questions in parametric statistics. Suppose we have a known distribution density f , and we get n i.i.d. samples from f (x − μ) for some unknown shift μ. The task is to estimate μ to high accuracy with high probability. The maximum likelihood estimator (MLE) is known to be asymptotically optimal as n → ∞, but what is possible for finite n? In this paper, we give two location estimators that are optimal under different criteria: 1) an estimator that has minimax-optimal estimation error subject to succeeding with probability 1 − ¶ and 2) a confidence interval estimator which, subject to its output interval containing μ with probability at least 1 − ¶, has the minimum expected squared interval width among all shift-invariant estimators. The latter construction can be generalized to minimizing the expectation of any loss function on the interval width. 
    more » « less
  3. Location estimation is one of the most basic questions in parametric statistics. Suppose we have a known distribution density f, and we get n i.i.d. samples from f(x − µ) for some unknown shift µ. The task is to estimate µ to high accuracy with high probability. The maximum likelihood estimator (MLE) is known to be asymptotically optimal as n → ∞, but what is possible for finite n? In this paper, we give two location estimators that are optimal under different criteria: 1) an estimator that has minimax-optimal estimation error subject to succeeding with probability 1 − δ and 2) a confidence interval estimator which, subject to its output interval containing µ with probability at least 1 − δ, has the minimum expected squared interval width among all shift-invariant estimators. The latter construction can be generalized to minimizing the expectation of any loss function on the interval width. 
    more » « less
  4. null (Ed.)