skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Explaining Why Fake Photos are Fake: Does It Work?
Today's disinformation campaigns may use deceptively altered photographs to promote a false narrative. In some cases, viewers may be unaware of the alteration and thus may more readily accept the promoted narrative. In this work, we consider whether this effect can be lessened by explaining to the viewer how an image has been manipulated. To explore this idea, we conduct a two-part study. We started with a survey (n=113) to examine whether users are indeed bad at identifying manipulated images. Our result validated this conjecture as participants performed barely better than random guessing (60% accuracy). Then we explored our main hypothesis in a second survey (n=543). We selected manipulated images circulated on the Internet that pictured political figures and opinion influencers. Participants were divided into three groups to view the original (unaltered) images, the manipulated images, and the manipulated images with explanations, respectively. Each image represents a single case study and is evaluated independently of the others. We find that simply highlighting and explaining the manipulation to users was not always effective. When it was effective, it did help to make users less agreeing with the intended messages behind the manipulation. However, surprisingly, the explanation also had an opposite (e.g.,negative) effect on users' feeling/sentiment toward the subjects in the images. Based on these results, we discuss open-ended questions which could serve as the basis for future research in this area.  more » « less
Award ID(s):
2030521
PAR ID:
10411995
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the ACM on Human-Computer Interaction
Volume:
7
Issue:
GROUP
ISSN:
2573-0142
Page Range / eLocation ID:
1 to 22
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The use of Artificial Intelligence (AI) decision support is increasing in high-stakes contexts, such as healthcare, defense, and finance. Uncertainty information may help users better leverage AI predictions, especially when combined with their domain knowledge. We conducted a human-subject experiment with an online sample to examine the effects of presenting uncertainty information with AI recommendations. The experimental stimuli and task, which included identifying plant and animal images, are from an existing image recognition deep learning model, a popular approach to AI. The uncertainty information was predicted probabilities for whether each label was the true label. This information was presented numerically and visually. In the study, we tested the effect of AI recommendations in a within-subject comparison and uncertainty information in a between-subject comparison. The results suggest that AI recommendations increased both participants’ accuracy and confidence. Further, providing uncertainty information significantly increased accuracy but not confidence, suggesting that it may be effective for reducing overconfidence. In this task, participants tended to have higher domain knowledge for animals than plants based on a self-reported measure of domain knowledge. Participants with more domain knowledge were appropriately less confident when uncertainty information was provided. This suggests that people use AI and uncertainty information differently, such as an expert versus second opinion, depending on their level of domain knowledge. These results suggest that if presented appropriately, uncertainty information can potentially decrease overconfidence that is induced by using AI recommendations. 
    more » « less
  2. Representing branching and comparative analyses in computational notebooks is complicated by the 1-dimensional (1D), top-down list arrangement of cells. Given the ubiquity of these and other non-linear features, their importance to analysis and narrative, and the struggles current 1D computational notebooks have, enabling organization of computational notebook cells in 2 dimensions (2D) may prove valuable. We investigated whether and how users would organize cells in such a “2D Computational Notebook” through a user study and gathered feedback from participants through a follow-up survey and optional interviews. Through the user study, we found 3 main design patterns for arranging notebook cells in 2D: Linear, Multi-Column, and Workboard. Through the survey and interviews, we found that users see potential value in 2D Computational Notebooks for branching and comparative analyses, but the expansion from 1D to 2D may necessitate additional navigational and organizational aids. 
    more » « less
  3. Working memory plays an important role in human activities across academic, professional, and social settings. Working memory is defined as the memory extensively involved in goal-directed behaviors in which information must be retained and manipulated to ensure successful task execution. The aim of this research is to understand the effect of image captioning with image description on an individual’s working memory. A study was conducted with eight neutral images comprising situations relatable to daily life such that each image could have a positive or negative description associated with the outcome of the situation in the image. The study consisted of three rounds where the first and second round involved two parts and the third round consisted of one part. The image was captioned a total of five times across the entire study. The findings highlighted that only 25% of participants were able to recall the captions which they captioned for an image after a span of 9–15 days; when comparing the recall rate of the captions, 50% of participants were able to recall the image caption from the previous round in the present round; and out of the positive and negative description associated with the image, 65% of participants recalled the former description rather than the latter. 
    more » « less
  4. Abstract Many studies have claimed to find that reading fiction leads to improvements in social cognition. But this work has left open the critical question of whether any type of narrative, fictional or nonfictional, might have similar effects. To address this question, as well as to test whether framing a narrative as fiction matters, the current studies presented participants ( N  = 268 in Study 1; N  = 362 in Study 2) with literary fiction texts, narrative nonfiction texts, expository nonfiction texts, or no texts. We tested their theory-of-mind abilities using the picture-based Reading the Mind in the Eyes task and a text-based test of higher-order social cognition. Reading anything was associated with higher scores compared to reading nothing, but the effects of framing and text type were inconsistent. These results suggest that prior claims regarding positive effects of reading fiction on mentalizing should be seen as tenuous; other mechanisms may be driving previously published effects. 
    more » « less
  5. Summary Comprehending 3D diagrams is critical for success in scientific practice and research demonstrates that understanding of 3D geology diagrams can be improved by making predictive sketches. In mathematics, explaining erroneous examples can support learning. This study combined these approaches to better understand how to effectively support 3D geologic diagram understanding. Participants generated sketches, explained erroneous example sketches, or copied and explained correct sketches. It was hypothesized that generating sketches or explaining erroneous cases would improve understanding, but an open question was whether these conditions would differ from each other. Explaining erroneous examples and sketching improved understanding whereas explaining correct sketches did not. Further, explaining erroneous examples was a more efficient strategy than sketching. These results indicate that erroneous examples can be effective for supporting 3D diagram comprehension and may be a practical substitute for some traditional sketching activities in the context of real classrooms where class time is limited. 
    more » « less