skip to main content


Title: Effects of feedback on galaxies in the VELA simulations: elongation, clumps, and compaction
ABSTRACT

The evolution of star-forming galaxies at high redshifts is very sensitive to the strength and nature of stellar feedback. Using two sets of cosmological, zoom-in simulations from the VELA suite, we compare the effects of two different models of feedback: with and without kinetic feedback from the expansion of supernovae shells and stellar winds. At a fixed halo mass and redshift, the stellar mass is reduced by a factor of ∼1–3 in the models with stronger feedback, so the stellar mass–halo mass relation is in better agreement with abundance matching results. On the other hand, the three-dimensional shape of low-mass galaxies is elongated along a major axis in both models. At a fixed stellar mass, M* < 1010 M⊙, galaxies are more elongated in the strong-feedback case. More massive, star-forming discs with high surface densities form giant clumps. However, the population of round, compact, old (agec > 300 Myr), quenched, stellar (or gas-poor) clumps is absent in the model with strong feedback. On the other hand, giant star-forming clumps with intermediate ages (agec = 100–300 Myr) can survive for several disc dynamical times, independently of feedback strength. The evolution through compaction followed by quenching in the plane of central surface density and specific star formation rate is similar under the two feedback models.

 
more » « less
NSF-PAR ID:
10412131
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
522
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 3912-3925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We study the escape fraction of ionizing photons (fesc) in two cosmological zoom-in simulations of galaxies in the reionization era with halo mass Mhalo ∼ 1010 and $10^{11}\, \mathrm{ M}_{\odot }$ (stellar mass M* ∼ 107 and $10^9\, \mathrm{ M}_{\odot }$) at z = 5 from the Feedback in Realistic Environments project. These simulations explicitly resolve the formation of proto-globular clusters (GCs) self-consistently, where 17–39 per cent of stars form in bound clusters during starbursts. Using post-processing Monte Carlo radiative transfer calculations of ionizing radiation, we compute fesc from cluster stars and non-cluster stars formed during a starburst over ∼100 Myr in each galaxy. We find that the averaged fesc over the lifetime of a star particle follows a similar distribution for cluster stars and non-cluster stars. Clusters tend to have low fesc in the first few Myr, presumably because they form preferentially in more extreme environments with high optical depths; the fesc increases later as feedback starts to destroy the natal cloud. On the other hand, some non-cluster stars formed between cluster complexes or in the compressed shells at the front of a superbubble can also have high fesc. We find that cluster stars on average have comparable fesc to non-cluster stars. This result is robust across several star formation models in our simulations. Our results suggest that the fraction of ionizing photons from proto-GCs to cosmic reionization is comparable to the cluster formation efficiencies in high-redshift galaxies and thus proto-GCs likely contribute an appreciable fraction of photons but are not the dominant sources for reionization. 
    more » « less
  2. null (Ed.)
    ABSTRACT We present the escape fraction of hydrogen ionizing photons (fesc) from a sample of 34 high-resolution cosmological zoom-in simulations of galaxies at z ≥ 5 in the Feedback in Realistic Environments project, post-processed with a Monte Carlo radiative transfer code for ionizing radiation. Our sample consists of 8500 haloes in Mvir ∼ 108–$10^{12}\, M_{\odot }$ (M* ∼ 104–$10^{10}\, M_{\odot }$) at z = 5–12. We find the sample average 〈fesc〉increases with halo mass for Mvir ∼ 108–$10^{9.5}\, M_{\odot }$, becomes nearly constant for 109.5–$10^{11}\, M_{\odot }$, and decreases at ${\gtrsim}10^{11}\, M_{\odot }$. Equivalently, 〈fesc〉 increases with stellar mass up to $M_{\ast }\sim 10^8\, M_{\odot }$ and decreases at higher masses. Even applying single-star stellar population synthesis models, we find a moderate 〈fesc〉 ∼ 0.2 for galaxies at $M_{\ast }\sim 10^8\, M_{\odot }$. Nearly half of the escaped ionizing photons come from stars 1–3 Myr old and the rest from stars 3–10 Myr old. Binaries only have a modest effect, boosting 〈fesc〉 by ∼25–35 per cent and the number of escaped photons by 60–80 per cent. Most leaked ionizing photons are from vigorously star-forming regions that usually contain a feedback-driven kpc-scale superbubble surrounded by a dense shell. The shell is forming stars while accelerated, so new stars formed earlier in the shell are already inside the shell. Young stars in the bubble and near the edge of the shell can fully ionize some low-column-density paths pre-cleared by feedback, allowing a large fraction of their ionizing photons to escape. The decrease of 〈fesc〉 at the high-mass end is due to dust attenuation, while at the low-mass end, 〈fesc〉 decreases owing to inefficient star formation and hence feedback. At fixed mass, 〈fesc〉 tends to increase with redshift. Although the absolute 〈fesc〉does not fully converge with resolution in our simulations, the mass- and redshift-dependence of 〈fesc〉 is likely robust. Our simulations produce sufficient ionizing photons for cosmic reionization. 
    more » « less
  3. ABSTRACT

    Negative feedback from accreting supermassive black holes is considered crucial in suppressing star formation and quenching massive galaxies. However, several models and observations suggest that black hole feedback may have a positive effect, triggering star formation by compressing interstellar medium gas to higher densities. We investigate the dual role of black hole feedback using cosmological hydrodynamic simulations from the Feedback In Realistic Environment (FIRE) project, incorporating a novel implementation of hyper-refined accretion-disc winds. Focusing on a massive, star-forming galaxy at z ∼ 2 ($M_{\rm halo} \sim 10^{12.5}\, {\rm M}_{\odot }$), we demonstrate that strong quasar winds with a kinetic power of ∼1046 erg s−1, persisting for over 20 Myr, drive the formation of a central gas cavity and significantly reduce the surface density of star formation across the galaxy’s disc. The suppression of star formation primarily occurs by limiting the availability of gas for star formation rather than by evacuating the pre-existing star-forming gas reservoir (preventive feedback dominates over ejective feedback). Despite the overall negative impact of quasar winds, we identify several potential indicators of local positive feedback, including (1) the spatial anticorrelation between wind-dominated regions and star-forming clumps, (2) higher local star formation efficiency in compressed gas at the edge of the cavity, and (3) increased contribution of outflowing material to local star formation. Moreover, stars formed under the influence of quasar winds tend to be located at larger radial distances. Our findings suggest that both positive and negative AGN feedback can coexist within galaxies, although the local positive triggering of star formation has a minor influence on global galaxy growth.

     
    more » « less
  4. ABSTRACT

    We address the nature of the giant clumps in high-z galaxies that undergo violent disc instability, distinguishing between long-lived and short-lived clumps. We study the evolution of long-lived clumps during migration through the disc via an analytical model tested by simulations and confront theory with CANDELS-HST observations. The clump ‘bathtub’ model, which considers gas and stellar gain and loss, involves four parameters: the accretion efficiency α, the star formation rate (SFR) efficiency ϵd, and the outflow mass-loading factors for gas and stars, η and ηs. The corresponding time-scales are comparable to the migration time, two-three orbital times. The accretion-rate dependence on clump mass, gas, and stars, allows an analytical solution involving exponential growing and decaying modes. For the fiducial parameter values there is a main evolution phase where the SFR and gas mass are constant and the stellar mass is rising linearly with time. This makes the inverse specific SFR an observable proxy for clump age. When η or ϵd are high, or α is low, the decaying mode induces a decline of SFR and gas mass till the migration ends. Later, the masses and SFR approach an hypothetical exponential growth with a constant specific SFR. The model matches simulations with different, moderate feedbacks, both in isolated and cosmological settings. The observed clumps agree with our predictions, indicating that the massive clumps are long-lived and migrating. A challenge is to model feedback that is non-disruptive in massive clumps but suppresses SFR to match the galactic stellar-to-halo mass ratio.

     
    more » « less
  5. Abstract

    This study addresses how the incidence rate of strong Oviabsorbers in a galaxy’s circumgalactic medium (CGM) depends on galaxy mass and, independently, on the amount of star formation in the galaxy. We use Hubble Space Telescope/Cosmic Origins Spectrograph absorption spectroscopy of quasars to measure Oviabsorption within 400 projected kpc and 300 km s−1of 52 galaxies withM*∼ 3 × 1010M. The galaxies have redshifts 0.12 <z< 0.6, stellar masses 1010.1M<M*< 1010.9M, and spectroscopic classifications as star-forming or passive. We compare the incidence rates of high column density Oviabsorption (NOVI≥ 1014.3cm−2) near star-forming and passive galaxies in two narrow ranges of stellar mass and, separately, in a matched range of halo mass. In all three mass ranges, the Ovicovering fraction within 150 kpc is higher around star-forming galaxies than around passive galaxies with greater than 3σ-equivalent statistical significance. On average, the CGM of star-forming galaxies withM*∼ 3 × 1010Mcontains more Ovithan the CGM of passive galaxies with the same mass. This difference is evidence for a CGM transformation that happens together with galaxy quenching and is not driven primarily by halo mass.

     
    more » « less