Peptide macrocycles (PMCs) are increasingly popular for the development of inhibitors of protein–protein interactions (PPIs). Large libraries of PMCs are accessible using display technologies like mRNA display and phage display. These technologies require macrocyclization chemistries to be compatible with biological milieu, severely limiting the types of technologies available for cyclization. Here, we introduce the novel non-canonical amino acid (ncAA) p -cyanoacetylene– l -Phe (pCAF), which facilitates spontaneous, co-translational cyclization through Michael addition with cysteine under physiological conditions. This new, robust chemistry creates stable macrocycles of a wide variety of ring sizes including bicyclic structures.
more »
« less
p ‐Chloropropynyl Phenylalanine, a Versatile Non‐Canonical Amino Acid for Co‐Translational Peptide Macrocyclization and Side Chain Diversification
Abstract Macrocyclization has proven to be a beneficial strategy to improve upon some of the disadvantages of peptides as therapeutics. Nevertheless, many peptide cyclization strategies are not compatible with in vitro display technologies like mRNA display. Here we describe the novel amino acidp‐chloropropynyl phenylalanine (pCPF). pCPF is a substrate for a mutant phenylalanyl‐tRNA synthetase and its introduction into peptides via in vitro translation leads to spontaneous peptide macrocyclization in the presence of peptides containing cysteine. Macrocyclization occurs efficiently with a wide variety of ring sizes. Moreover, pCPF can be reacted with thiols after charging onto tRNA, enabling the testing of diverse ncAAs in translation. The versatility of pCPF should facilitate downstream studies of translation and enable the creation of novel macrocyclic peptide libraries.
more »
« less
- Award ID(s):
- 1904872
- PAR ID:
- 10412163
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemBioChem
- Volume:
- 24
- Issue:
- 11
- ISSN:
- 1439-4227
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Here, we report a novel “CyClick” strategy for the macrocyclization of peptides that works in an exclusively intramolecular fashion thereby precluding the formation of dimers and oligomers via intermolecular reactions. The CyClick chemistry is highly chemoselective for the N‐terminus of the peptide with a C‐terminal aldehyde. In this protocol, the peptide conformation internally directs activation of the backbone amide bond and thereby facilitates formation of a stable 4‐imidazolidinone‐fused cyclic peptide with high diastereoselectivity (>99 %). This method is tolerant to a variety of peptide aldehydes and has been applied for the synthesis of 12‐ to 23‐membered rings with varying amino acid compositions in one pot under mild reaction conditions. The reaction generated peptide macrocycles featuring a 4‐imidazolidinone in their scaffolds, which acts as an endocyclic control element that promotes intramolecular hydrogen bonding and leads to macrocycles with conformationally rigid turn structures.more » « less
-
Abstract In this comprehensive review, I focus on the twentyE. coliaminoacyl‐tRNA synthetases and their ability to charge non‐canonical amino acids (ncAAs) onto tRNAs. The promiscuity of these enzymes has been harnessed for diverse applications including understanding and engineering of protein function, creation of organisms with an expanded genetic code, and the synthesis of diverse peptide libraries for drug discovery. The review catalogues the structures of all known ncAA substrates for each of the 20E. coliaminoacyl‐tRNA synthetases, including ncAA substrates for engineered versions of these enzymes. Drawing from the structures in the list, I highlight trends and novel opportunities for further exploitation of these ncAAs in the engineering of protein function, synthetic biology, and in drug discovery.more » « less
-
Abstract Peptide cyclization has dramatic effects on a variety of important properties, enhancing metabolic stability, limiting conformational flexibility, and altering cellular entry and intracellular localization. The hydrophilic, polyfunctional nature of peptides creates chemoselectivity challenges in macrocyclization, especially for natural sequences without biorthogonal handles. Herein, we describe a gaseous sulfonyl chloride derived reagent that achieves amine–amine, amine–phenol, and amine–aniline crosslinking through a minimalist linchpin strategy that affords macrocyclic urea or carbamate products. The cyclization reaction is metal‐mediated and involves a novel application of sulfine species that remains unexplored in aqueous or biological contexts. The aqueous method delivers unique cyclic or bicyclic topologies directly from a variety of natural bioactive peptides without the need for protecting‐group strategies.more » « less
-
Abstract The absence of orthogonal aminoacyl-transfer RNA (tRNA) synthetases that accept non-l-α-amino acids is a primary bottleneck hindering the in vivo translation of sequence-defined hetero-oligomers and biomaterials. Here we report that pyrrolysyl-tRNA synthetase (PylRS) and certain PylRS variants accept α-hydroxy, α-thio andN-formyl-l-α-amino acids, as well as α-carboxy acid monomers that are precursors to polyketide natural products. These monomers are accommodated and accepted by the translation apparatus in vitro; those with reactive nucleophiles are incorporated into proteins in vivo. High-resolution structural analysis of the complex formed between one PylRS enzyme and am-substituted 2-benzylmalonic acid derivative revealed an active site that discriminates prochiral carboxylates and accommodates the large size and distinct electrostatics of an α-carboxy substituent. This work emphasizes the potential of PylRS-derived enzymes for acylating tRNA with monomers whose α-substituent diverges substantially from the α-amine of proteinogenic amino acids. These enzymes or derivatives thereof could synergize with natural or evolved ribosomes and/or translation factors to generate diverse sequence-defined non-protein heteropolymers.more » « less