Abstract Microdroplets show unique chemistry, especially in their intrinsic redox properties, and to this we here add a case of simultaneous and spontaneous oxidation and reduction. We report the concurrent conversions of several phosphonates to phosphonic acids by reduction (R−P → H−P) and to pentavalent phosphoric acids by oxidation. The experimental results suggest that the active reagent is the water radical cation/anion pair. The water radical cation is observed directly as the ionized water dimer while the water radical anion is only seen indirectly though the spontaneous reduction of carbon dioxide to formate. The coexistence of oxidative and reductive species in turn supports the proposal of a double‐layer structure at the microdroplet surface, where the water radical cation and radical anion are separated and accumulated.
more »
« less
Electroorganic Synthesis in Aqueous Solution via Generation of Strongly Oxidizing and Reducing Intermediates
Water is the ideal green solvent for organic electrosynthesis. However, a majority of electroorganic processes require potentials that lie beyond the electrochemical window for water. In general, water oxidation and reduction lead to poor synthetic yields and selectivity or altogether prohibit carrying out a desired reaction. Herein, we report several electroorganic reactions in water using synthetic strategies referred to as reductive oxidation and oxidative reduction. Reductive oxidation involves the homogeneous reduction of peroxydisulfate (S2O82–) via electrogenerated Ru(NH3)62+ at potential of –0.2 V vs. Ag/AgCl (3.5 M KCl) to form the highly oxidizing sulfate radical anion (E0′ (SO4•–/SO42–) = 2.21 V vs. Ag/AgCl), which is capable of oxidizing species beyond the water oxidation potential. Electrochemically generated SO4•– then efficiently abstracts a hydrogen atom from a variety of organic compounds such as benzyl alcohol and toluene to yield product in water. The reverse analogue of reductive oxidation is oxidative reduction. In this case, the homogeneous oxidation of oxalate (C2O42–) by electrochemically generated Ru(bpy)33+ produces the strongly reducing carbon dioxide radical anion (E0′ (CO2•–/CO2) = –2.1 V vs. Ag/AgCl), which is capable of reducing species at potential beyond the water or proton reduction potential. In preliminary studies, the CO2•– has used to homogenously reduce the C–Br moiety belonging to benzyl bromide at an oxidizing potential in aqueous solution.
more »
« less
- Award ID(s):
- 2002158
- PAR ID:
- 10412322
- Date Published:
- Journal Name:
- Faraday Discussions
- ISSN:
- 1359-6640
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Gold screen printed electrodes (Au‐SPEs) were treated electrochemically to produce a micro‐rough pattern increasing the real electrode surface. The procedure based on the Dynamic Hydrogen Bubble Template (DHBT) method included electrochemical deposition of Au layers onto the surface of the Au‐SPEs, followed by a reductive process at −3 V (vs. Ag/AgCl) leading to formation of H2bubbles, which produced pores in the Au multilayer. The morphology of the micro‐porous Au electrode was characterized by scanning electron microscopy (SEM), surface mapping, surface profilometry, and confocal microscopy. The electrode surface morphology was controlled by the time of the electrode reductive treatment (H2evolution) and the optimized condition resulting in the best surface structuring was found. Notably, the surface roughness leading to the highest electrode surface area was significantly increased compared to previously reported results with Au‐SPEs.more » « less
-
null (Ed.)Electroreduction of N2 to NH3 is an energy- and environmentally-friendly alternative to the Haber-Bosch process. Little is known, however, about reactive sites for electrochemical nitrogen reduction reaction (NRR) at Earth-abundant oxide or oxynitride surfaces. Here, we report N-free VIII/IV-oxide films, created by O2 plasma oxidation of polycrystalline vanadium, exhibiting N2 reduction at neutral pH with an onset potential of −0.16 V vs Ag/AgCl. DFT calculations indicate that N2 scission from O-supported V-centers is energetically favorable by ~18 kcal mol−1 compared to N-supported sites. Theory and experiment yield fundamental insights concerning the effect of metal oxophilicity towards design of earth-abundant NRR electrocatalysts.more » « less
-
Abstract Redox is a unique, programmable modality capable of bridging communication between biology and electronics. Previous studies have shown that theE. coliredox-responsive OxyRS regulon can be re-wired to accept electrochemically generated hydrogen peroxide (H2O2) as an inducer of gene expression. Here we report that the redox-active phenolic plant signaling molecule acetosyringone (AS) can also induce gene expression from the OxyRS regulon. AS must be oxidized, however, as the reduced state present under normal conditions cannot induce gene expression. Thus, AS serves as a “pro-signaling molecule” that can be activated by its oxidation—in our case by application of oxidizing potential to an electrode. We show that the OxyRS regulon is not induced electrochemically if the imposed electrode potential is in the mid-physiological range. Electronically sliding the applied potential to either oxidative or reductive extremes induces this regulon but through different mechanisms: reduction of O2to form H2O2or oxidation of AS. Fundamentally, this work reinforces the emerging concept that redox signaling depends more on molecular activities than molecular structure. From an applications perspective, the creation of an electronically programmed “pro-signal” dramatically expands the toolbox for electronic control of biological responses in microbes, including in complex environments, cell-based materials, and biomanufacturing.more » « less
-
Abstract The conversion of waste CO2to value‐added chemicals through electrochemical reduction is a promising technology for mitigating climate change while simultaneously providing economic opportunities. The use of non‐aqueous solvents like methanol allows for higher CO2availability and novel products. In this work, the electrochemistry of CO2reduction in acidic methanol catholyte at a Pb working electrode was investigated while using a separate aqueous anolyte to promote a sustainable water oxidation half‐reaction. The selectivity among methyl formate (a product unique to reduction of CO2in methanol), formic acid, and formate was critically dependent on the catholyte pH, with higher pH conditions leading to formate and low pH favoring methyl formate. The potential dependence of the product distribution in acidic catholyte was also investigated, with a faradaic efficiency for methyl formate as high as 75 % measured at −2.0 V vs. Ag/AgCl.more » « less
An official website of the United States government

