skip to main content


Title: Methodology for Accelerated Inter-Cycle Simulations of Li-ion Battery Degradation with Intra-Cycle Resolved Degradation Mechanisms
Award ID(s):
1762247
NSF-PAR ID:
10412352
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2022 American Control Conference (ACC)
Page Range / eLocation ID:
1788 to 1793
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    With the wide deployment of rechargeable batteries, battery degradation prediction has emerged as a challenging issue. However, battery life defined by capacity loss provides limited information regarding battery degradation. In this article, we explore the prediction of voltage‐capacity curves over battery lifetime based on a sequence to sequence (seq2seq) model. We demonstrate that the data of one present voltage‐capacity curve can be used as the input of the seq2seq model to accurately predict the voltage‐capacity curves at 100, 200, and 300 cycles ahead. This offers an opportunity to update battery management strategies in response to the predicted consequences. Besides, the model avoids feature engineering and is flexible to incorporate different numbers of input and output cycles. Therefore, it can be easily transplanted to other battery systems or electrochemical components. Furthermore, the model features data generation, that is, we can use the data of only one cycle to generate a large spectrum of aging data at the future cycles for developing other battery diagnosis or prognosis methods. In this way, the time and energy consuming battery degradation tests can be sharply reduced.image

     
    more » « less
  2. null (Ed.)
  3. Although heterogeneous photocatalysis has shown promising results in degradation of contaminants of emerging concern (CECs), the mechanistic implications related to structural diversity of chemicals, affecting oxidative (by HO•) or reductive (by O2•−) degradation pathways are still scarce. In this study, the degradation extents and rates of selected organics in the absence and presence of common scavengers for reactive oxygen species (ROS) generated during photocatalytic treatment were determined. The obtained values were then brought into correlation as K coefficients (MHO•/MO2•−), denoting the ratio of organics degraded by two occurring mechanisms: oxidation and reduction via HO• and O2•−. The compounds possessing K >> 1 favor oxidative degradation over HO•, and vice versa for reductive degradation (i.e., if K << 1 compounds undergo reductive reactions driven by O2•−). Such empirical values were brought into correlation with structural features of CECs, represented by molecular descriptors, employing a quantitative structure activity/property relationship (QSA/PR) modeling. The functional stability and predictive power of the resulting QSA/PR model was confirmed by internal and external cross-validation. The most influential descriptors were found to be the size of the molecule and presence/absence of particular molecular fragments such as C − O and C − Cl bonds; the latter favors HO•-driven reaction, while the former the reductive pathway. The developed QSA/PR models can be considered robust predictive tools for evaluating distribution between degradation mechanisms occurring in photocatalytic treatment.

     
    more » « less