skip to main content


Title: Semantic similarity measure of natural language text through machine learning and a keyword‐aware cross‐encoder‐ranking summarizer—A case study using UCGIS GIS &T body of knowledge
Abstract

Initiated by the University Consortium of Geographic Information Science (UCGIS), the GIS&T Body of Knowledge (BoK) is a community‐driven endeavor to define, develop, and document geospatial topics related to geographic information science and technologies (GIS&T). In recent years, GIS&T BoK has undergone rigorous development in terms of its topic re‐organization and content updating, resulting in a new digital version of the project. While the BoK topics provide useful materials for researchers and students to learn about GIS, the semantic relationships among the topics, such as semantic similarity, should also be identified so that a better and automated topic navigation can be achieved. Currently, the related topics are either defined manually by editors or authors, which may result in an incomplete assessment of topic relationships. To address this challenge, our research evaluates the effectiveness of multiple natural language processing (NLP) techniques in extracting semantics from text, including both deep neural networks and traditional machine learning approaches. Besides, a novel text summarization—KACERS (Keyword‐Aware Cross‐Encoder‐Ranking Summarizer)—is proposed to generate a semantic summary of scientific publications. By identifying the semantic linkages among key topics, this work guides the future development and content organization of the GIS&T BoK project. It also offers a new perspective on the use of machine learning techniques for analyzing scientific publications and demonstrates the potential of the KACERS summarizer in semantic understanding of long text documents.

 
more » « less
NSF-PAR ID:
10412381
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Transactions in GIS
Volume:
27
Issue:
4
ISSN:
1361-1682
Format(s):
Medium: X Size: p. 1068-1089
Size(s):
["p. 1068-1089"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Obeid, I. (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do not have access to such data resources must rely on techniques in which existing models can be adapted to new datasets [6]. A preliminary version of this breast corpus release was tested in a pilot study using a baseline machine learning system, ResNet18 [7], that leverages several open-source Python tools. The pilot corpus was divided into three sets: train, development, and evaluation. Portions of these slides were manually annotated [1] using the nine labels in Table 1 [8] to identify five to ten examples of pathological features on each slide. Not every pathological feature is annotated, meaning excluded areas can include focuses particular to these labels that are not used for training. A summary of the number of patches within each label is given in Table 2. To maintain a balanced training set, 1,000 patches of each label were used to train the machine learning model. Throughout all sets, only annotated patches were involved in model development. The performance of this model in identifying all the patches in the evaluation set can be seen in the confusion matrix of classification accuracy in Table 3. The highest performing labels were background, 97% correct identification, and artifact, 76% correct identification. A correlation exists between labels with more than 6,000 development patches and accurate performance on the evaluation set. Additionally, these results indicated a need to further refine the annotation of invasive ductal carcinoma (“indc”), inflammation (“infl”), nonneoplastic features (“nneo”), normal (“norm”) and suspicious (“susp”). This pilot experiment motivated changes to the corpus that will be discussed in detail in this poster presentation. To increase the accuracy of the machine learning model, we modified how we addressed underperforming labels. One common source of error arose with how non-background labels were converted into patches. Large areas of background within other labels were isolated within a patch resulting in connective tissue misrepresenting a non-background label. In response, the annotation overlay margins were revised to exclude benign connective tissue in non-background labels. Corresponding patient reports and supporting immunohistochemical stains further guided annotation reviews. The microscopic diagnoses given by the primary pathologist in these reports detail the pathological findings within each tissue site, but not within each specific slide. The microscopic diagnoses informed revisions specifically targeting annotated regions classified as cancerous, ensuring that the labels “indc” and “dcis” were used only in situations where a micropathologist diagnosed it as such. Further differentiation of cancerous and precancerous labels, as well as the location of their focus on a slide, could be accomplished with supplemental immunohistochemically (IHC) stained slides. When distinguishing whether a focus is a nonneoplastic feature versus a cancerous growth, pathologists employ antigen targeting stains to the tissue in question to confirm the diagnosis. For example, a nonneoplastic feature of usual ductal hyperplasia will display diffuse staining for cytokeratin 5 (CK5) and no diffuse staining for estrogen receptor (ER), while a cancerous growth of ductal carcinoma in situ will have negative or focally positive staining for CK5 and diffuse staining for ER [9]. Many tissue samples contain cancerous and non-cancerous features with morphological overlaps that cause variability between annotators. The informative fields IHC slides provide could play an integral role in machine model pathology diagnostics. Following the revisions made on all the annotations, a second experiment was run using ResNet18. Compared to the pilot study, an increase of model prediction accuracy was seen for the labels indc, infl, nneo, norm, and null. This increase is correlated with an increase in annotated area and annotation accuracy. Model performance in identifying the suspicious label decreased by 25% due to the decrease of 57% in the total annotated area described by this label. A summary of the model performance is given in Table 4, which shows the new prediction accuracy and the absolute change in error rate compared to Table 3. The breast tissue subset we are developing includes 3,505 annotated breast pathology slides from 296 patients. The average size of a scanned SVS file is 363 MB. The annotations are stored in an XML format. A CSV version of the annotation file is also available which provides a flat, or simple, annotation that is easy for machine learning researchers to access and interface to their systems. Each patient is identified by an anonymized medical reference number. Within each patient’s directory, one or more sessions are identified, also anonymized to the first of the month in which the sample was taken. These sessions are broken into groupings of tissue taken on that date (in this case, breast tissue). A deidentified patient report stored as a flat text file is also available. Within these slides there are a total of 16,971 total annotated regions with an average of 4.84 annotations per slide. Among those annotations, 8,035 are non-cancerous (normal, background, null, and artifact,) 6,222 are carcinogenic signs (inflammation, nonneoplastic and suspicious,) and 2,714 are cancerous labels (ductal carcinoma in situ and invasive ductal carcinoma in situ.) The individual patients are split up into three sets: train, development, and evaluation. Of the 74 cancerous patients, 20 were allotted for both the development and evaluation sets, while the remain 34 were allotted for train. The remaining 222 patients were split up to preserve the overall distribution of labels within the corpus. This was done in hope of creating control sets for comparable studies. Overall, the development and evaluation sets each have 80 patients, while the training set has 136 patients. In a related component of this project, slides from the Fox Chase Cancer Center (FCCC) Biosample Repository (https://www.foxchase.org/research/facilities/genetic-research-facilities/biosample-repository -facility) are being digitized in addition to slides provided by Temple University Hospital. This data includes 18 different types of tissue including approximately 38.5% urinary tissue and 16.5% gynecological tissue. These slides and the metadata provided with them are already anonymized and include diagnoses in a spreadsheet with sample and patient ID. We plan to release over 13,000 unannotated slides from the FCCC Corpus simultaneously with v1.0.0 of TUDP. Details of this release will also be discussed in this poster. Few digitally annotated databases of pathology samples like TUDP exist due to the extensive data collection and processing required. The breast corpus subset should be released by November 2021. By December 2021 we should also release the unannotated FCCC data. We are currently annotating urinary tract data as well. We expect to release about 5,600 processed TUH slides in this subset. We have an additional 53,000 unprocessed TUH slides digitized. Corpora of this size will stimulate the development of a new generation of deep learning technology. In clinical settings where resources are limited, an assistive diagnoses model could support pathologists’ workload and even help prioritize suspected cancerous cases. ACKNOWLEDGMENTS This material is supported by the National Science Foundation under grants nos. CNS-1726188 and 1925494. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. REFERENCES [1] N. Shawki et al., “The Temple University Digital Pathology Corpus,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York City, New York, USA: Springer, 2020, pp. 67 104. https://www.springer.com/gp/book/9783030368432. [2] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning.” Major Research Instrumentation (MRI), Division of Computer and Network Systems, Award No. 1726188, January 1, 2018 – December 31, 2021. https://www. isip.piconepress.com/projects/nsf_dpath/. [3] A. Gulati et al., “Conformer: Convolution-augmented Transformer for Speech Recognition,” in Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), 2020, pp. 5036-5040. https://doi.org/10.21437/interspeech.2020-3015. [4] C.-J. Wu et al., “Machine Learning at Facebook: Understanding Inference at the Edge,” in Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA), 2019, pp. 331–344. https://ieeexplore.ieee.org/document/8675201. [5] I. Caswell and B. Liang, “Recent Advances in Google Translate,” Google AI Blog: The latest from Google Research, 2020. [Online]. Available: https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html. [Accessed: 01-Aug-2021]. [6] V. Khalkhali, N. Shawki, V. Shah, M. Golmohammadi, I. Obeid, and J. Picone, “Low Latency Real-Time Seizure Detection Using Transfer Deep Learning,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2021, pp. 1 7. https://www.isip. piconepress.com/publications/conference_proceedings/2021/ieee_spmb/eeg_transfer_learning/. [7] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning,” Philadelphia, Pennsylvania, USA, 2020. https://www.isip.piconepress.com/publications/reports/2020/nsf/mri_dpath/. [8] I. Hunt, S. Husain, J. Simons, I. Obeid, and J. Picone, “Recent Advances in the Temple University Digital Pathology Corpus,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2019, pp. 1–4. https://ieeexplore.ieee.org/document/9037859. [9] A. P. Martinez, C. Cohen, K. Z. Hanley, and X. (Bill) Li, “Estrogen Receptor and Cytokeratin 5 Are Reliable Markers to Separate Usual Ductal Hyperplasia From Atypical Ductal Hyperplasia and Low-Grade Ductal Carcinoma In Situ,” Arch. Pathol. Lab. Med., vol. 140, no. 7, pp. 686–689, Apr. 2016. https://doi.org/10.5858/arpa.2015-0238-OA. 
    more » « less
  2. Abstract Why the new findings matter

    The process of teaching and learning is complex, multifaceted and dynamic. This paper contributes a seminal resource to highlight the digitisation of the educational sciences by demonstrating how new machine learning methods can be effectively and reliably used in research, education and practical application.

    Implications for educational researchers and policy makers

    The progressing digitisation of societies around the globe and the impact of the SARS‐COV‐2 pandemic have highlighted the vulnerabilities and shortcomings of educational systems. These developments have shown the necessity to provide effective educational processes that can support sometimes overwhelmed teachers to digitally impart knowledge on the plan of many governments and policy makers. Educational scientists, corporate partners and stakeholders can make use of machine learning techniques to develop advanced, scalable educational processes that account for individual needs of learners and that can complement and support existing learning infrastructure. The proper use of machine learning methods can contribute essential applications to the educational sciences, such as (semi‐)automated assessments, algorithmic‐grading, personalised feedback and adaptive learning approaches. However, these promises are strongly tied to an at least basic understanding of the concepts of machine learning and a degree of data literacy, which has to become the standard in education and the educational sciences.

    Demonstrating both the promises and the challenges that are inherent to the collection and the analysis of large educational data with machine learning, this paper covers the essential topics that their application requires and provides easy‐to‐follow resources and code to facilitate the process of adoption.

     
    more » « less
  3. Machine learning techniques underlying Big Data analytics have the potential to benefit data intensive communities in e.g., bioinformatics and neuroscience domain sciences. Today’s innovative advances in these domain communities are increasingly built upon multi-disciplinary knowledge discovery and cross-domain collaborations. Consequently, shortened time to knowledge discovery is a challenge when investigating new methods, developing new tools, or integrating datasets. The challenge for a domain scientist particularly lies in the actions to obtain guidance through query of massive information from diverse text corpus comprising of a wide-ranging set of topics. In this paper, we propose a novel “domain-specific topic model” (DSTM) that can drive conversational agents for users to discover latent knowledge patterns about relationships among research topics, tools and datasets from exemplar scientific domains. The goal of DSTM is to perform data mining to obtain meaningful guidance via a chatbot for domain scientists to choose the relevant tools or datasets pertinent to solving a computational and data intensive research problem at hand. Our DSTM is a Bayesian hierarchical model that extends the Latent Dirichlet Allocation (LDA) model and uses a Markov chain Monte Carlo algorithm to infer latent patterns within a specific domain in an unsupervised manner. We apply our DSTM to large collections of data from bioinformatics and neuroscience domains that include hundreds of papers from reputed journal archives, hundreds of tools and datasets. Through evaluation experiments with a perplexity metric, we show that our model has better generalization performance within a domain for discovering highly specific latent topics. 
    more » « less
  4. Over the past several decades, urban planning has considered a variety of advanced analysis methods with greater and lesser degrees of adoption. Geographic Information Systems (GIS) is probably the most notable, with others such as database management systems (DBMS), decision support systems (DSS), planning support systems (PSS), and expert systems (ES), having mixed levels of recognition and acceptance (Kontokosta, C. E. (2021). Urban informatics in the science and practice of planning. Journal of Planning Education and Research, 41(4), 382–395. doi:10.1177/0739456X18793716; Yigitcanlar, T., Desouza, K. C., Butler, L., & Roozkhosh, F. (2020). Contributions and risks of artificial intelligence (AI) in building smarter cities: Insights from a systematic review of the literature. Energies, 13(6), 1473). Advances in information technologies have moved very slowly in the field of urban planning, more recently concerning ‘smart city’ technologies while revolutionizing other domains, such as consumer goods and services. Baidu, Amazon, Netflix, Google, and many others are using these technologies to gain insights into consumer behaviour and characteristics and improve supply chains and logistics. This is an opportune time for urban planners to consider the application of AI-related techniques given vast increases in data availability, increased processing speeds, and increased popularity and development of planning related applications. Research on these topics by urban planning scholars has increased over the past few years, but there is little evidence to suggest that the results are making it into the hands of professional planners (Batty, M. (2018). Artificial intelligence and smart cities. Environment and Planning B: Urban Analytics and City Science, 45(1), 3–6; Batty, M. (2021). Planning education in the digital age. Environment and Planning B: Urban Analytics and City Science, 48(2), 207–211). Others encourage planners to leverage the ubiquity of data and advances in computing to enhance redistributive justice in information resources and procedural justice in decision-making among marginalized communities (Boeing, G., Besbris, M., Schachter, A., & Kuk, J. (2020). Housing search in the Age of Big data: Smarter cities or the same Old blind spots? Housing Policy Debate, 31(1), 112–126; Goodspeed, R. (2015). Smart cities: Moving beyond urban cybernetics to tackle wicked problems. Cambridge journal of regions, Economy and Society, 8(1), 79–92). This article highlights findings from a recent literature review on AI in planning and discusses the results of a national survey of urban planners about their perspectives on AI adoption and concerns they have expressed about its broader use in the profession. Currently, the outlook is mixed, matching how urban planners initially viewed the early stages of computer adoption within the profession. And yet today, personal computers are essential to any job. 
    more » « less
  5. Networked data involve complex information from multifaceted channels, including topology structures, node content, and/or node labels etc., where structure and content are often correlated but are not always consistent. A typical scenario is the citation relationships in scholarly publications where a paper is cited by others not because they have the same content, but because they share one or multiple subject matters. To date, while many network embedding methods exist to take the node content into consideration, they all consider node content as simple flat word/attribute set and nodes sharing connections are assumed to have dependency with respect to all words or attributes. In this paper, we argue that considering topic-level semantic interactions between nodes is crucial to learn discriminative node embedding vectors. In order to model pairwise topic relevance between linked text nodes, we propose topical network embedding, where interactions between nodes are built on the shared latent topics. Accordingly, we propose a unified optimization framework to simultaneously learn topic and node representations from the network text contents and structures, respectively. Meanwhile, the structure modeling takes the learned topic representations as conditional context under the principle that two nodes can infer each other contingent on the shared latent topics. Experiments on three real-world datasets demonstrate that our approach can learn significantly better network representations, i.e., 4.1% improvement over the state-of-the-art methods in terms of Micro-F1 on Cora dataset. (The source code of the proposed method is available through the github link: https:// github.com/codeshareabc/TopicalNE.) 
    more » « less