Charge heterogeneity is a prevalent feature in many electrochemical systems. In a commercial cathode of Li-ion batteries, the composite is hierarchically structured across multiple length scales including the sub-micron single-crystal primary-particle domains up to the macroscopic particle ensembles. The redox kinetics of charge transfer and mass transport strongly couples with mechanical stresses. This interplay catalyzes substantial heterogeneity in the charge (re)distribution, stresses, and mechanical damage in the composite electrode during charging and discharging. We assess the heterogeneous electrochemistry and mechanics in a LiNixMnyCozO2(NMC) cathode using a fully coupled electro-chemo-mechanics model at the cell level. A microstructure-resolved model is constructed based on the synchrotron X-ray tomography data. We calculate the stress field in the composite and then quantitatively evaluate the kinetics of surface charge transfer and Li transport biased by mechanical stresses. We further model the cyclic behavior of the cell. The repetitive deformation of the active particles and the weakening of the interfacial strength cause gradual increase of the interfacial debonding. The mechanical damage impedes electron transfer, incurs more charge heterogeneity, and results in the capacity degradation in batteries over cycles.
more »
« less
Computational Modeling of Electrochemomechanics of High-Capacity Composite Electrodes in Li-Ion Batteries
Abstract Mechanical failure and its interference with electrochemistry are a roadblock in deploying high-capacity electrodes for Li-ion batteries. Computational prediction of the electrochemomechanical behavior of high-capacity composite electrodes is a significant challenge because of (i) complex interplay between mechanics and electrochemistry in the form of stress-regulated Li transport and interfacial charge transfer, (ii) thermodynamic solution non-ideality, (iii) nonlinear deformation kinematics and material inelasticity, and (iv) evolving material properties over the state of charge. We develop a computational framework that integrates the electrochemical response of batteries modulated by large deformation, mechanical stresses, and dynamic material properties. We use silicon as a model system and construct a microstructurally resolved porous composite electrode model. The model concerns the effect of large deformation of silicon on charge conduction and electrochemical response of the composite electrode, impact of mechanical stress on Li transport and interfacial charge transfer, and asymmetric charging/discharging kinetics. The study captures the rate-dependent, coupled electrochemomechanical behavior of high-capacity composite electrodes that agrees well with experimental results.
more »
« less
- Award ID(s):
- 1832707
- PAR ID:
- 10412566
- Date Published:
- Journal Name:
- Journal of Applied Mechanics
- Volume:
- 89
- Issue:
- 8
- ISSN:
- 0021-8936
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Layer-structured Na intercalation compounds such as NaxMO2 (M=Co, Mn, Cr) have attracted much attention as cathode materials for sodium-ion batteries due to their high volumetric and gravimetric energy densities. Among them, NaCrO2 with layered rock salt structure is one of the promising cathodes since NaCrO2 has a desirable flat and smooth charge/discharge voltage plateau.1 In addition, NaCrO2 has the highest thermal stability at charged state which makes it a potentially safer cathode material.2 The NaCrO2 exhibits a reversible capacity of 110 mAh g-1 with good cycling performance.3 However, the transition metal oxide (TMO) cathode materials in NIBs undergo severe chemo-mechanical deformations which leads to capacity fade and poor cycling and is the limiting factor of NIBs. The electrochemical characterization and examination of the electrode structure were the primary focus of several investigations. To improve the lifespan and performance of electrode materials for Na-ion batteries, it is vital to comprehend how Na ions impact the chemo-mechanical stability of the electrodes. In this talk, we will discuss the driving forces behind the structural and interfacial deformations on NaCrO2 cathodes. Digital image correlation measurements were conducted to probe strain evolution in the electrode during cycling. The free-standing composite NaCrO2 electrode was used for stain measurements in custom-cell assembly. The battery was cycled against Na metal in 1 M NaClO4 in PC. The first part of the study involves structural and interfacial deformations in the lower voltage range of 2.3 V to 3.5 V where x<0.5 in NaxCrO2. And the second part focuses on the structural and interfacial deformations in the voltage range of 2.3 V to 4.7 V where x>0.5 in NaxCrO2. In the preliminary studies, we observed that the initial insertion of Na ions leads to negative strain evolution (contraction) in the electrode, followed by expansions in the electrode at a higher state of discharge. Similar phenomena are also observed during charge cycles, where extraction of Na results in an initial contraction in the electrode, followed by expansion at a higher state of charge. Understanding the mechanisms behind chemo-mechanical deformations will allow to tune structure & material property for better electrochemical performance.more » « less
-
Transition metal dichalcogenides (TMDs) such as the WS2 have been widely studied as potential electrode materials for lithium-ion batteries (LIB) owing to TMDs’ layered morphology and reversible conversion reaction with the alkali metals between 0 to 2 V (v/s Li/Li+) potentials. However, works involving TMD materials as electrodes for sodium- (NIBs) and potassium-ion batteries (KIBs) are relatively few, mainly due to poor electrode performance arising from significant volume changes and pulverization by the larger size alkali-metal ions. Here, we show that Na+ and K+ cyclability in WS2 TMD is improved by introducing WS2 nanosheets in a chemically and mechanically robust matrix comprising precursor-derived ceramic (PDC) silicon oxycarbide (SiOC) material. The WS2/SiOC composite in fibermat morphology was achieved via electrospinning followed by thermolysis of a polymer solution consisting of a polysiloxane (precursor to SiOC) dispersed with exfoliated WS2 nanosheets. The composite electrode was successfully tested in Na-ion and K-ion half-cells as a working electrode, which rendered the first cycle charge capacity of 474.88 mAh g−1 and 218.91 mAh g−1, respectively. The synergistic effect of the composite electrode leads to higher capacity and improved coulombic efficiency compared to the neat WS2 and neat SiOC materials in these cells.more » « less
-
Abstract Two-dimensional materials (2DM) and their heterostructures (2D + nD, where n = 0, 1, 2, 3) hold significant promise for electrochemical energy storage systems (EESS), such as batteries. 2DM can act as van der Waals (vdW) slick interfaces between conventional active materials (e.g., silicon) and current collectors, enhancing interfacial adhesion and mitigating stress-induced fractures. They can also serve as alternatives to traditional polymer binders (e.g., MXenes), highlighting the importance of interfacial mechanics between 2DM and active materials. During charge/discharge cycles, intercalation and deintercalation processes substantially affect the mechanical behavior of 2DM used as binders, collectors, or electrodes. For example, porous graphene networks have demonstrated capacities up to five times greater than traditional graphite anodes. However, modeling 2DM in EESS remains challenging due to the complex coupling between electrochemistry and mechanics. Defective graphene, for instance, promotes strong adatom adsorption (e.g., Li⁺), which can hinder desorption during discharge, thereby influencing mechanical properties. Despite the promise of 2DM, most current studies fall short in capturing these critical chemo-mechanical interactions. This perspective provides a comprehensive overview of recent advances in understanding the mechanical behavior of 2DM in EESS. It identifies key modeling challenges and outlines future research directions. Multiscale modeling approaches—including atomistic and molecular simulations, continuum mechanics, machine learning, and generative artificial intelligence—are discussed. This work aims to inspire deeper exploration of the chemo-mechanics of 2DM and offer valuable guidance for experimental design and optimization of 2DM-based EESS for practical applications.more » « less
-
Despite their rapid emergence as the dominant paradigm for electrochemical energy storage, the full promise of lithium-ion batteries is yet to be fully realized, partly because of challenges in adequately resolving common degradation mechanisms. Positive electrodes of Li-ion batteries store ions in interstitial sites based on redox reactions throughout their interior volume. However, variations in the local concentration of inserted Li-ions and inhomogeneous intercalation-induced structural transformations beget substantial stress. Such stress can accumulate and ultimately engender substantial delamination and transgranular/intergranular fracture in typically brittle oxide materials upon continuous electrochemical cycling. This perspective highlights the coupling between electrochemistry, mechanics, and geometry spanning key electrochemical processes: surface reaction, solid-state diffusion, and phase nucleation/transformation in intercalating positive electrodes. In particular, we highlight recent findings on tunable material design parameters that can be used to modulate the kinetics and thermodynamics of intercalation phenomena, spanning the range from atomistic and crystallographic materials design principles (based on alloying, polymorphism, and pre-intercalation) to emergent mesoscale structuring of electrode architectures (through control of crystallite dimensions and geometry, curvature, and external strain). This framework enables intercalation chemistry design principles to be mapped to degradation phenomena based on consideration of mechanics coupling across decades of length scales. Scale-bridging characterization and modeling, along with materials design, holds promise for deciphering mechanistic understanding, modulating multiphysics couplings, and devising actionable strategies to substantially modify intercalation phase diagrams in a manner that unlocks greater useable capacity and enables alleviation of chemo-mechanical degradation mechanisms.more » « less
An official website of the United States government

