skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On Perrot’s index cocycles
We give a simplified version of a construction due to Denis Perrot that recovers the Todd class of the complexified tangent bundle of a smooth manifold from a JLO-type cyclic cocycle. The construction takes place within an algebraic framework, rather than the customary functional-analytic frame- work of the JLO theory. The series expansion for the exponential function is used in place of the heat kernel from the functional-analytic theory; the Dirac operator chosen is far from elliptic; and a remarkable new trace discovered by Perrot replaces the operator trace. In its full form, Perrot’s theory constitutes a wholly new approach to index theory. The account presented here covers most but not all of his approach.  more » « less
Award ID(s):
1952669
PAR ID:
10412583
Author(s) / Creator(s):
; ;
Editor(s):
Connes, A.; Consani, C.; Dundas, B.; Khalkhali, M.; Moscovici, H.
Date Published:
Journal Name:
Proceedings of symposia in pure mathematics
Volume:
105
ISSN:
2324-707X
Page Range / eLocation ID:
29-62
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A finite element elasticity complex on tetrahedral meshes and the corresponding commutative diagram are devised. The H 1 H^1 conforming finite element is the finite element developed by Neilan for the velocity field in a discrete Stokes complex. The symmetric div-conforming finite element is the Hu-Zhang element for stress tensors. The construction of an H ( inc ) H(\operatorname {inc}) -conforming finite element of minimum polynomial degree 6 6 for symmetric tensors is the focus of this paper. Our construction appears to be the first H ( inc ) H(\operatorname {inc}) -conforming finite elements on tetrahedral meshes without further splitting. The key tools of the construction are the decomposition of polynomial tensor spaces and the characterization of the trace of the inc \operatorname {inc} operator. The polynomial elasticity complex and Koszul elasticity complex are created to derive the decomposition. The trace of the inc \operatorname {inc} operator is induced from a Green’s identity. Trace complexes and bubble complexes are also derived to facilitate the construction. Two-dimensional smooth finite element Hessian complex and div ⁡ div \operatorname {div}\operatorname {div} complex are constructed. 
    more » « less
  2. Abstract Beginning with the work of Landau, Pollak and Slepian in the 1960s on time‐band limiting, commuting pairs of integral and differential operators have played a key role in signal processing, random matrix theory, and integrable systems. Previously, such pairs were constructed by ad hoc methods, which essentially worked because a commuting operator of low order could be found by a direct calculation. We describe a general approach to these problems that proves that every pointWof Wilson's infinite dimensional adelic Grassmannian gives rise to an integral operator , acting on for a contour , which reflects a differential operator with rational coefficients in the sense that on a dense subset of . By using analytic methods and methods from integrable systems, we show that the reflected differential operator can be constructed from the Fourier algebra of the associated bispectral function . The exact size of this algebra with respect to a bifiltration is in turn determined using algebro‐geometric methods. Intrinsic properties of four involutions of the adelic Grassmannian naturally lead us to consider the reflecting property above in place of plain commutativity. Furthermore, we prove that the time‐band limited operators of the generalized Laplace transforms with kernels given by the rank one bispectral functions always reflect a differential operator. A 90° rotation argument is used to prove that the time‐band limited operators of the generalized Fourier transforms with kernels admit a commuting differential operator. These methods produce vast collections of integral operators with prolate‐spheroidal properties, associated to the wave functions of all rational solutions of the KP hierarchy vanishing at infinity, introduced by Krichever in the late 1970s. 
    more » « less
  3. In recent years, a new approach has been proposed in the study of the inverse scattering problem for electromagnetic waves. In particular, a study is made of the analytic properties of the scattering operator, and the results of this study are used to design target signatures that respond to changes in the electromagnetic parameters of the scattering medium. These target signatures are characterized by novel eigenvalue problems such that the eigenvalues can be determined from measured scattering data. Changes in the structural properties of the material or the presence of flaws cause changes in the measured eigenvalues. In this article, we provide a general framework for developing target signatures and numerical evidence of the efficacy of new target signatures based on recently introduced eigenvalue problems arising in electromagnetic scattering theory for anisotropic media. 
    more » « less
  4. The response of a body described by a quasi-linear viscoelastic constitutive relation, whose material moduli depend on the mechanical pressure (that is one-third the trace of stress) is studied. The constitutive relation stems from a class of implicit relations between the histories of the stress and the relative deformation gradient. A-priori thresholding is enforced through the pressure that ensures that the displacement gradient remains small. The resulting mixed variational problem consists of an evolutionary equation with the Volterra convolution operator; this equation is studied for well-posedness within the theory of maximal monotone graphs. For isotropic extension or compression, a semi-analytic solution of the quasi-linear viscoelastic problem is constructed under stress control. The equations are studied numerically with respect to monotone loading both with and without thresholding. In the example, the thresholding procedure ensures that the solution does not blow-up in finite time. 
    more » « less
  5. null (Ed.)
    In T. L. Gill and W. W. Zachary, Functional Analysis and the Feynman Operator Calculus (Springer, New York, 2016), the topology of [Formula: see text] was replaced with a new topology and denoted by [Formula: see text]. This space was then used to construct Lebesgue measure on [Formula: see text] in a manner that is no more difficult than the same construction on [Formula: see text]. More important for us, a new class of separable Banach spaces [Formula: see text], [Formula: see text], for the HK-integrable functions, was introduced. These spaces also contain the [Formula: see text] spaces and the Schwartz space as continuous dense embeddings. This paper extends the work in T. L. Gill and W. W. Zachary, Functional Analysis and the Feynman Operator Calculus (Springer, New York, 2016) from [Formula: see text] to [Formula: see text]. 
    more » « less