Title: Exploring the Unchartered Space of Container Registry Typosquatting
With the increasing popularity of containerized applications, container registries have hosted millions of repositories that allow developers to store, manage, and share their software. Unfortunately, they have also become a hotbed for adversaries to spread malicious images to the public. In this paper, we present the first in-depth study on the vulnerability of container registries to typosquatting attacks, in which adversaries intentionally upload malicious images with an identification similar to that of a benign image so that users may accidentally download malicious images due to typos. We demonstrate that such typosquatting attacks could pose a serious security threat in both public and private registries as well as across multiple platforms. To shed light on the container registry typosquatting threat, we first conduct a measurement study and a 210-day proof-of-concept exploitation on public container registries, revealing that human users indeed make random typos and download unwanted container images. We also systematically investigate attack vectors on private registries and reveal that its naming space is open and could be easily exploited for launching a typosquatting attack. In addition, for a typosquatting attack across multiple platforms, we demonstrate that adversaries can easily self-host malicious registries or exploit existing container registries to manipulate repositories with similar identifications. Finally, we propose CRYSTAL, a lightweight extension to existing image management, which effectively defends against typosquatting attacks from both container users and registries. more »« less
Bhattacharjee, Shameek; Das, Sajal K
(, IEEE pervasive computing)
Kawsar, Fahim
(Ed.)
This article proposes a unified threat landscape for Participatory Crowd Sensing (P-CS) systems. Specifically, it focuses on attacks from organized malicious actors that may use the knowledge of P-CS platform's operations and exploit algorithmic weaknesses in AI-based methods of event trust, user reputation, decision-making or recommendation models deployed to preserve information integrity in P-CS. We emphasize on intent driven malicious behaviors by advanced adversaries and how attacks are crafted to achieve those attack impacts. Three directions of the threat model are introduced, such as attack goals, types, and strategies. We expand on how various strategies are linked with different attack types and goals, underscoring formal definition, their relevance and impact on the P-CS platform.
Typosquatting—the practice of registering a domain name similar to another, usually well-known, domain name—is typically intended to drive traffic to a website for malicious or profit- driven purposes. In this paper we assess the current state of typosquatting, both broadly (across a wide variety of techniques) and deeply (using an extensive and novel dataset). Our breadth derives from the application of eight different candidate-generation techniques to a selection of the most popular domain names. Our depth derives from probing the resulting name set via a unique corpus comprising over 3.3B Domain Name System (DNS) records. We find that over 2.3M potential typosquatting names have been registered that resolve to an IP address. We then assess those names using a framework focused on identifying the intent of the domain from the perspectives of DNS and webpage clustering. Using the DNS information, HTTP responses, and Google SafeBrowsing, we classify the candidate typosquatting names as resolved to private IP, malicious, defensive, parked, legitimate, or unknown intents. Our findings provide the largest-scale and most-comprehensive perspective to date on typosquatting, exposing potential risks to users. Further, our methodology provides a blueprint for tracking and classifying typosquatting on an ongoing basis.
Typosquatting—the practice of registering a domain name similar to another, usually well-known, domain name—is typically intended to drive traffic to a website for malicious or profitdriven purposes. In this paper we assess the current state of typosquatting, both broadly (across a wide variety of techniques) and deeply (using an extensive and novel dataset). Our breadth derives from the application of eight different candidate-generation techniques to a selection of the most popular domain names. Our depth derives from probing the resulting name set via a unique corpus comprising over 3.3B Domain Name System (DNS) records. We find that over 2.3M potential typosquatting names have been registered that resolve to an IP address. We then assess those names using a framework focused on identifying the intent of the domain from the perspectives of DNS and webpage clustering. Using the DNS information, HTTP responses, and Google SafeBrowsing, we classify the candidate typosquatting names as resolved to private IP, malicious, defensive, parked, legitimate, or unknown intents. Our findings provide the largest-scale and most-comprehensive perspective to date on typosquatting, exposing potential risks to users. Further, our methodology provides a blueprint for tracking and classifying typosquatting on an ongoing basis.
Guan, Zihan; Hu, Mengxuan; Li, Sheng; Vullikanti, Anil Kumar
(, Proceedings of the AAAI Conference on Artificial Intelligence)
Diffusion models are vulnerable to backdoor attacks, where malicious attackers inject backdoors by poisoning certain training samples during the training stage. This poses a significant threat to real-world applications in the Model-as-a-Service (MaaS) scenario, where users query diffusion models through APIs or directly download them from the internet. To mitigate the threat of backdoor attacks under MaaS, black-box input-level backdoor detection has drawn recent interest, where defenders aim to build a firewall that filters out backdoor samples in the inference stage, with access only to input queries and the generated results from diffusion models. Despite some preliminary explorations on the traditional classification tasks, these methods cannot be directly applied to the generative tasks due to two major challenges: (1) more diverse failures and (2) a multi-modality attack surface. In this paper, we propose a black-box input-level backdoor detection framework on diffusion models, called UFID. Our defense is motivated by an insightful causal analysis: Backdoor attacks serve as the confounder, introducing a spurious path from input to target images, which remains consistent even when we perturb the input samples with Gaussian noise. We further validate the intuition with theoretical analysis. Extensive experiments across different datasets on both conditional and unconditional diffusion models show that our method achieves superb performance on detection effectiveness and run-time efficiency.
Zhao, Nannan; Lin, Muhui; Albahar, Hadeel; Paul, Arnab K; Huan, Zhijie; Abraham, Subil; Chen, Keren; Tarasov, Vasily; Skourtis, Dimitrios; Anwar, Ali; et al
(, ACM Transactions on Storage)
The wide adoption of Docker containers for supporting agile and elastic enterprise applications has led to a broad proliferation of container images. The associated storage performance and capacity requirements place a high pressure on the infrastructure ofcontainer registriesthat store and distribute images andcontainer storage systemson the Docker client side that manage image layers and store ephemeral data generated at container runtime. The storage demand is worsened by the large amount of duplicate data in images. Moreover, container storage systems that use Copy-on-Write (CoW) file systems as storage drivers exacerbate the redundancy. Exploiting the high file redundancy in real-world images is a promising approach to drastically reduce the growing storage requirements of container registries and improve the space efficiency of container storage systems. However, existing deduplication techniques significantly degrade the performance of both registries and container storage systems because of data reconstruction overhead as well as the deduplication cost. We propose DupHunter, an end-to-end deduplication scheme that deduplicates layers for both Docker registries and container storage systems while maintaining a high image distribution speed and container I/O performance. DupHunter is divided into three tiers: registry tier, middle tier, and client tier. Specifically, we first build a high-performance deduplication engine at the registry tier that not only natively deduplicates layers for space savings but also reduces layer restore overhead. Then, we use deduplication offloading at the middle tier to eliminate the redundant files from the client tier and avoid bringing deduplication overhead to the clients. To further reduce the data duplicates caused by CoWs and improve the container I/O performance, we utilize a container-aware storage system at the client tier that reserves space for each container and arranges the placement of files and their modifications on the disk to preserve locality. Under real workloads, DupHunter reduces storage space by up to 6.9× and reduces theGETlayer latency up to 2.8× compared to the state-of-the-art. Moreover, DupHunter can improve the container I/O performance by up to 93% for reads and 64% for writes.
Liu, Guannan, Gao, Xing, and Wang, Haining. Exploring the Unchartered Space of Container Registry Typosquatting. Retrieved from https://par.nsf.gov/biblio/10412687. 31st USENIX Security Symposium .
Liu, Guannan, Gao, Xing, and Wang, Haining.
"Exploring the Unchartered Space of Container Registry Typosquatting". 31st USENIX Security Symposium (). Country unknown/Code not available. https://par.nsf.gov/biblio/10412687.
@article{osti_10412687,
place = {Country unknown/Code not available},
title = {Exploring the Unchartered Space of Container Registry Typosquatting},
url = {https://par.nsf.gov/biblio/10412687},
abstractNote = {With the increasing popularity of containerized applications, container registries have hosted millions of repositories that allow developers to store, manage, and share their software. Unfortunately, they have also become a hotbed for adversaries to spread malicious images to the public. In this paper, we present the first in-depth study on the vulnerability of container registries to typosquatting attacks, in which adversaries intentionally upload malicious images with an identification similar to that of a benign image so that users may accidentally download malicious images due to typos. We demonstrate that such typosquatting attacks could pose a serious security threat in both public and private registries as well as across multiple platforms. To shed light on the container registry typosquatting threat, we first conduct a measurement study and a 210-day proof-of-concept exploitation on public container registries, revealing that human users indeed make random typos and download unwanted container images. We also systematically investigate attack vectors on private registries and reveal that its naming space is open and could be easily exploited for launching a typosquatting attack. In addition, for a typosquatting attack across multiple platforms, we demonstrate that adversaries can easily self-host malicious registries or exploit existing container registries to manipulate repositories with similar identifications. Finally, we propose CRYSTAL, a lightweight extension to existing image management, which effectively defends against typosquatting attacks from both container users and registries.},
journal = {31st USENIX Security Symposium},
author = {Liu, Guannan and Gao, Xing and Wang, Haining},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.