skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring the Unchartered Space of Container Registry Typosquatting
With the increasing popularity of containerized applications, container registries have hosted millions of repositories that allow developers to store, manage, and share their software. Unfortunately, they have also become a hotbed for adversaries to spread malicious images to the public. In this paper, we present the first in-depth study on the vulnerability of container registries to typosquatting attacks, in which adversaries intentionally upload malicious images with an identification similar to that of a benign image so that users may accidentally download malicious images due to typos. We demonstrate that such typosquatting attacks could pose a serious security threat in both public and private registries as well as across multiple platforms. To shed light on the container registry typosquatting threat, we first conduct a measurement study and a 210-day proof-of-concept exploitation on public container registries, revealing that human users indeed make random typos and download unwanted container images. We also systematically investigate attack vectors on private registries and reveal that its naming space is open and could be easily exploited for launching a typosquatting attack. In addition, for a typosquatting attack across multiple platforms, we demonstrate that adversaries can easily self-host malicious registries or exploit existing container registries to manipulate repositories with similar identifications. Finally, we propose CRYSTAL, a lightweight extension to existing image management, which effectively defends against typosquatting attacks from both container users and registries.  more » « less
Award ID(s):
2054657
PAR ID:
10412687
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
31st USENIX Security Symposium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kawsar, Fahim (Ed.)
    This article proposes a unified threat landscape for Participatory Crowd Sensing (P-CS) systems. Specifically, it focuses on attacks from organized malicious actors that may use the knowledge of P-CS platform's operations and exploit algorithmic weaknesses in AI-based methods of event trust, user reputation, decision-making or recommendation models deployed to preserve information integrity in P-CS. We emphasize on intent driven malicious behaviors by advanced adversaries and how attacks are crafted to achieve those attack impacts. Three directions of the threat model are introduced, such as attack goals, types, and strategies. We expand on how various strategies are linked with different attack types and goals, underscoring formal definition, their relevance and impact on the P-CS platform. 
    more » « less
  2. The wide adoption of Docker containers for supporting agile and elastic enterprise applications has led to a broad proliferation of container images. The associated storage performance and capacity requirements place a high pressure on the infrastructure ofcontainer registriesthat store and distribute images andcontainer storage systemson the Docker client side that manage image layers and store ephemeral data generated at container runtime. The storage demand is worsened by the large amount of duplicate data in images. Moreover, container storage systems that use Copy-on-Write (CoW) file systems as storage drivers exacerbate the redundancy. Exploiting the high file redundancy in real-world images is a promising approach to drastically reduce the growing storage requirements of container registries and improve the space efficiency of container storage systems. However, existing deduplication techniques significantly degrade the performance of both registries and container storage systems because of data reconstruction overhead as well as the deduplication cost. We propose DupHunter, an end-to-end deduplication scheme that deduplicates layers for both Docker registries and container storage systems while maintaining a high image distribution speed and container I/O performance. DupHunter is divided into three tiers: registry tier, middle tier, and client tier. Specifically, we first build a high-performance deduplication engine at the registry tier that not only natively deduplicates layers for space savings but also reduces layer restore overhead. Then, we use deduplication offloading at the middle tier to eliminate the redundant files from the client tier and avoid bringing deduplication overhead to the clients. To further reduce the data duplicates caused by CoWs and improve the container I/O performance, we utilize a container-aware storage system at the client tier that reserves space for each container and arranges the placement of files and their modifications on the disk to preserve locality. Under real workloads, DupHunter reduces storage space by up to 6.9× and reduces theGETlayer latency up to 2.8× compared to the state-of-the-art. Moreover, DupHunter can improve the container I/O performance by up to 93% for reads and 64% for writes. 
    more » « less
  3. null (Ed.)
    In the last couple of years, several adversarial attack methods based on different threat models have been proposed for the image classification problem. Most existing defenses consider additive threat models in which sample perturbations have bounded L_p norms. These defenses, however, can be vulnerable against adversarial attacks under non-additive threat models. An example of an attack method based on a non-additive threat model is the Wasserstein adversarial attack proposed by Wong et al. (2019), where the distance between an image and its adversarial example is determined by the Wasserstein metric ("earth-mover distance") between their normalized pixel intensities. Until now, there has been no certifiable defense against this type of attack. In this work, we propose the first defense with certified robustness against Wasserstein Adversarial attacks using randomized smoothing. We develop this certificate by considering the space of possible flows between images, and representing this space such that Wasserstein distance between images is upper-bounded by L_1 distance in this flow-space. We can then apply existing randomized smoothing certificates for the L_1 metric. In MNIST and CIFAR-10 datasets, we find that our proposed defense is also practically effective, demonstrating significantly improved accuracy under Wasserstein adversarial attack compared to unprotected models. 
    more » « less
  4. Backdoor attacks have been shown to be a serious threat against deep learning systems such as biometric authentication and autonomous driving. An effective backdoor attack could enforce the model misbehave under certain predefined conditions, i.e., triggers, but behave normally otherwise. The triggers of existing attacks are mainly injected in the pixel space, which tend to be visually identifiable at both training and inference stages and detectable by existing defenses. In this paper, we propose a simple but effective and invisible black-box backdoor attack FTROJAN through trojaning the frequency domain. The key intuition is that triggering perturbations in the frequency domain correspond to small pixel-wise perturbations dispersed across the entire image, breaking the underlying assumptions of existing defenses and making the poisoning images visually indistinguishable from clean ones. Extensive experimental evaluations show that FTROJAN is highly effective and the poisoning images retain high perceptual quality. Moreover, we show that FTROJAN can robustly elude or significantly degenerate the performance of existing defenses. 
    more » « less
  5. The pervasiveness of neural networks (NNs) in critical computer vision and image processing applications makes them very attractive for adversarial manipulation. A large body of existing research thoroughly investigates two broad categories of attacks targeting the integrity of NN models. The first category of attacks, commonly called Adversarial Examples, perturbs the model's inference by carefully adding noise into input examples. In the second category of attacks, adversaries try to manipulate the model during the training process by implanting Trojan backdoors. Researchers show that such attacks pose severe threats to the growing applications of NNs and propose several defenses against each attack type individually. However, such one-sided defense approaches leave potentially unknown risks in real-world scenarios when an adversary can unify different attacks to create new and more lethal ones bypassing existing defenses. In this work, we show how to jointly exploit adversarial perturbation and model poisoning vulnerabilities to practically launch a new stealthy attack, dubbed AdvTrojan. AdvTrojan is stealthy because it can be activated only when: 1) a carefully crafted adversarial perturbation is injected into the input examples during inference, and 2) a Trojan backdoor is implanted during the training process of the model. We leverage adversarial noise in the input space to move Trojan-infected examples across the model decision boundary, making it difficult to detect. The stealthiness behavior of AdvTrojan fools the users into accidentally trusting the infected model as a robust classifier against adversarial examples. AdvTrojan can be implemented by only poisoning the training data similar to conventional Trojan backdoor attacks. Our thorough analysis and extensive experiments on several benchmark datasets show that AdvTrojan can bypass existing defenses with a success rate close to 100% in most of our experimental scenarios and can be extended to attack federated learning as well as high-resolution images. 
    more » « less