skip to main content


Title: Large genomic deletion linked to field-evolved resistance to Cry1F corn in fall armyworm (Spodoptera frugiperda) from Florida
Abstract The fall armyworm ( Spodoptera frugiperda ) is a highly polyphagous lepidopteran pest of relevant food and fiber staple crops. In the Americas, transgenic corn and cotton producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) have controlled and reduced the damage caused by S. frugiperda . However, cases of field-evolved S. frugiperda resistance to Bt corn producing the Cry1F insecticidal protein have been documented in North and South America. When characterized, field resistance to Cry1F is linked to insertions and mutations resulting in a modified or truncated ABC transporter subfamily C2 ( SfABCC2 ) protein that serves as Cry1F receptor in susceptible S. frugiperda . In this work, we present detection of a large genomic deletion (~ 8 kb) affecting the SfABCC2 and an ABC transporter gene subfamily 3 –like gene ( SfABCC3 ) as linked to resistance to Cry1F corn in a S . frugiperda strain from Florida (FL39). Monitoring for this genomic deletion using a discriminatory PCR reaction in field-collected S. frugiperda moths detected individuals carrying this allele in Florida, but not in surrounding states. This is the first report of a large genomic deletion being involved in resistance to a Bt insecticidal protein.  more » « less
Award ID(s):
1821914
PAR ID:
10412715
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transgenic crops that produce insecticidal proteins fromBacillus thuringiensis(Bt) can suppress pests and reduce insecticide sprays, but their efficacy is reduced when pests evolve resistance. Although farmers plant refuges of non-Bt host plants to delay pest resistance, this tactic has not been sufficient against the western corn rootworm,Diabrotica virgifera virgifera. In the United States, some populations of this devastating pest have rapidly evolved practical resistance to Cry3 toxins and Cry34/35Ab, the only Bt toxins in commercially available corn that kill rootworms. Here, we analyzed data from 2011 to 2016 on Bt corn fields producing Cry3Bb alone that were severely damaged by this pest in 25 crop-reporting districts of Illinois, Iowa, and Minnesota. The annual mean frequency of these problem fields was 29 fields (range 7 to 70) per million acres of Cry3Bb corn in 2011 to 2013, with a cost of $163 to $227 per damaged acre. The frequency of problem fields declined by 92% in 2014 to 2016 relative to 2011 to 2013 and was negatively associated with rotation of corn with soybean. The effectiveness of corn rotation for mitigating Bt resistance problems did not differ significantly between crop-reporting districts with versus without prevalent rotation-resistant rootworm populations. In some analyses, the frequency of problem fields was positively associated with planting of Cry3 corn and negatively associated with planting of Bt corn producing both a Cry3 toxin and Cry34/35Ab. The results highlight the central role of crop rotation for mitigating impacts ofD. v. virgiferaresistance to Bt corn.

     
    more » « less
  2. The evolution of pest resistance to management tools reduces productivity and results in economic losses in agricultural systems. To slow its emergence and spread, monitoring and prevention practices are implemented in resistance management programs. Recent work suggests that genomic approaches can identify signs of emerging resistance to aid in resistance management. Here, we empirically examined the sensitivity of genomic monitoring for resistance management in transgenic Bt crops, a globally important agricultural innovation. Whole genome resequencing of wild North AmericanHelicoverpa zeacollected from non-expressing refuge and plants expressing Cry1Ab confirmed that resistance-associated signatures of selection were detectable after a single generation of exposure. Upon demonstrating its sensitivity, we applied genomic monitoring to wildH. zeathat survived Vip3A exposure resulting from cross-pollination of refuge plants in seed-blended plots. Refuge seed interplanted with transgenic seed exposedH. zeato sublethal doses of Vip3A protein in corn ears and was associated with allele frequency divergence across the genome. Some of the greatest allele frequency divergence occurred in genomic regions adjacent to a previously described candidate gene for Vip3A resistance. Our work highlights the power of genomic monitoring to sensitively detect heritable changes associated with field exposure to Bt toxins and suggests that seed-blended refuge will likely hasten the evolution of resistance to Vip3A in lepidopteran pests.

     
    more » « less
  3. Transgenic crops producing crystalline (Cry) proteins from the bacterium Bacillus thuringiensis (Bt) have been used extensively to control some major crop pests. However, many populations of the noctuid moth Helicoverpa zea, one of the most important crop pests in the United States, have evolved practical resistance to several Cry proteins including Cry1Ac. Although mutations in single genes that confer resistance to Cry proteins have been identified in lab-selected and gene-edited strains of H. zea and other lepidopteran pests, the genetic basis of field-evolved resistance to Cry proteins in H. zea has remained elusive. We used a genomic approach to analyze the genetic basis of field-evolved resistance to Cry1Ac in 937 H. zea derived from 17 sites in seven states of the southern United States. We found evidence for extensive gene flow among all populations studied. Field-evolved resistance was not associated with mutations in 20 single candidate genes previously implicated in resistance or susceptibility to Cry proteins in H. zea or other lepidopterans. Instead, resistance in field samples was associated with increased copy number of a cluster of nine trypsin genes. However, trypsin gene amplification occurred in a susceptible sample and not in all resistant samples, implying that this amplification does not always confer resistance and mutations in other genes also contribute to field-evolved resistance to Cry1Ac in H. zea . The mismatch between lab-generated and field-evolved resistance inH. zeais unlike other cases of Bt resistance and reflects challenges for managing this pest.

     
    more » « less
  4. Fall armyworm is one of the main pests of conventional and Bacillus thuringiensis (Bt) corn in many countries in the Americas, Africa, Asia and in Australia. We conducted diet-overlay bioassays to determine the status of susceptibility to four Bt proteins (Cry1A.105, Cry2Ab2, Cry1F and Cry1Ac) in three different populations of fall armyworm from Mexico, and one population from Puerto Rico. Bioassays showed that fall armyworms from Puerto Rico were resistant to Cry1F with a resistance ratio 50 (RR50) higher than 10,000 ng/cm2 and to Cry1Ac with a RR50 = 12.2 ng/cm2, displaying the highest median lethal concentration (LC50) values to all Bt proteins tested. The effective concentration 50 (EC50) values further confirmed the loss of susceptibility to Cry1F and Cry1Ac in this population. However, LC50 and EC50 results with Cry1A.105 and Cry2Ab2 revealed that fall armyworm from Puerto Rico remained largely susceptible to these two proteins. The Mexican populations were highly susceptible to all the Bt proteins tested and displayed the lowest LC50 and EC50 values to all Bt proteins. Our results suggest that Cry1F and Cry1Ac resistance is stable in fall armyworm from Puerto Rico. However, this population remains susceptible to Cry1A.105 and Cry2Ab2. Results with Mexican fall armyworms suggest that possible deployment of Bt corn in Mexico will not be immediately challenged by Bt-resistant genes in those regions. 
    more » « less
  5. Abstract

    Clavibacteris an agriculturally important bacterial genus comprising nine host-specific species/subspecies includingC. nebraskensis(Cn), which causes Goss's wilt and blight of maize. A robust, simple, and field-deployable method is required to specifically detectCnin infected plants and distinguish it from otherClavibacterspecies for quarantine purposes and timely disease management. A multiplex Recombinase Polymerase Amplification (RPA) coupled with a Lateral Flow Device (LFD) was developed for sensitive and rapid detection ofClavibacterandCndirectly from infected host. Unique and conserved genomic regions, the ABC transporter ATP-binding protein CDS/ABC-transporter permease and the MFS transporter gene, were used to design primers/probes for specific detection of genusClavibacterandCn,respectively. The assay was evaluated using 52 strains, representing all nine species/subspecies ofClavibacter,other closely related bacterial species, and naturally- and artificially-infected plant samples; no false positives or negatives were detected. The RPA reactions were also incubated in a closed hand at body temperature; results were again specific. The assay does not require DNA isolation and can be directly performed using host sap. The detection limit of 10 pg (~ 3000 copies) and 100 fg (~ 30 copies) was determined forClavibacter- andCn-specific primers/probes, respectively. The detection limit forCn-specific primer/probe set was decreased to 1 pg (~ 300 copies) when 1 µL of host sap was added into the RPA reaction containing tenfold serially diluted genomic DNA; though no effect was observed onClavibacter-specific primer/probe set. The assay is accurate and has applications at point-of-need diagnostics. This is the first multiplex RPA assay for any plant pathogen.

     
    more » « less