Abstract Optical vortices have the tremendous potential to increase data capacity by leveraging the extra degree of freedom of orbital angular momentum. On the other hand, anisotropic 2D materials are promising building blocks for future integrated polarization‐sensitive photonic and optoelectronic devices. Here, highly anisotropic third‐harmonic optical vortex beam generation is demonstrated with fork holograms patterned on ultrathin 2D germanium arsenide flakes. It is shown that the anisotropic nonlinear vortex beam generation can be achieved independent of the fork grating orientation with respect to the crystallographic orientation. Furthermore, 2D fork hologram is designed to generate multiple optical vortices having different topological charges with strong anisotropic responses. These results pave the way toward the advancement of 2D material‐based anisotropic nonlinear optical devices for future applications in photonic integrated circuits, optical communication, and optical information processing.
more »
« less
Spin-orbit-locked hyperbolic polariton vortices carrying reconfigurable topological charges
Abstract The topological features of optical vortices have been opening opportunities for free-space and on-chip photonic technologies, e.g., for multiplexed optical communications and robust information transport. In a parallel but disjoint effort, polar anisotropic van der Waals nanomaterials supporting hyperbolic phonon polaritons (HP 2 s) have been leveraged to drastically boost light-matter interactions. So far HP 2 studies have been mainly focusing on the control of their amplitude and scale features. Here we report the generation and observation of mid-infrared hyperbolic polariton vortices (HP 2 Vs) associated with reconfigurable topological charges. Spiral-shaped gold disks coated with a flake of hexagonal boron nitride are exploited to tailor spin–orbit interactions and realise deeply subwavelength HP 2 Vs. The complex interplay between excitation spin, spiral geometry and HP 2 dispersion enables robust reconfigurability of the associated topological charges. Our results reveal unique opportunities to extend the application of HP 2 s into topological photonics, quantum information processing by integrating these phenomena with single-photon emitters, robust on-chip optical applications, sensing and nanoparticle manipulation.
more »
« less
- Award ID(s):
- 2044281
- PAR ID:
- 10412969
- Date Published:
- Journal Name:
- eLight
- Volume:
- 2
- Issue:
- 1
- ISSN:
- 2662-8643
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Surface Plasmon Polariton (SPP), as a novel information carrier, offers unprecedented opportunity for confining electromagnetic fields that carry orbital angular momentum (OAM) to subwavelength dimensions. In this thesis, I focus experimentally on the generation, manipulation, and spatio-temporal evolution—and theoretically on the analytical modeling—of plasmonic phase singularities, known as plasmonic vortices, at the silver (Ag)/vacuum interface. I image and study the dynamics of plasmonic vortices by interferometric time-resolved multi-photon photoemission electron microscopy (ITR-mP-PEEM). Firstly, I report on the generation, evolution, and topological properties of plasmonic vortices carrying pure geometrically induced orbital angular momentum (OAM), generated by illuminating Archimedean spiral coupling structures with normally incident, linearly polarized light. Next, I present an analytical model describing the generation and evolution of these plasmonic vortices, and based on this model, I further analyze their spatial structure and dynamics. I also derived the spin angular momentum (SAM) of plasmonic vortices, whose textures reveal transient plasmonic spin-Skyrmion topological quasiparticles. In parallel, I also record images of plasmonic vectoral vortex field evolution on the nanometer spatial and femtosecond temporal scale, from which I derive the plasmonic spin Skyrmion boundary and topological charge. The excellent agreement between analytical model and experimental results confirms the topological spin texture at surface plasmon polariton vortex core. To extend the understanding of ITR-PEEM imaging, I perform a simple experiment withv double line coupling structure at the silver/vacuum interface, which reveals an asymmetric cross term between the different components of the SPP field that also appear in the ITR-PEEM imaging. Finally, I approach a novel method to manipulate momentum transport between two plasmonic vortices analytically and experimentally. By tuning the relative distance between two vortex generator structures with same sign and sign of the geometric charge, a conveyor belt-like field could be observed at the center of the device, which can be applied to transport the field, momentum, and energy between two plasmonic vortices.more » « less
-
Abstract Understanding the near-field electromagnetic interactions that produce optical orbital angular momentum (OAM) is crucial for integrating twisted light into nanotechnology. Here, we examine the cathodoluminescence (CL) of plasmonic vortices carrying OAM generated in spiral nanostructures. The nanospiral geometry defines a photonic local density of states that is sampled by the electron probe in a scanning transmission electron microscope (STEM), thus accessing the optical response of the plasmonic vortex with high spatial and spectral resolution. We map the full spectral dispersion of the plasmonic vortex in spiral structures designed to yield increasing topological charge. Additionally, we fabricate nested nanospirals and demonstrate that OAM from one nanospiral can be coupled to the nested nanospiral, resulting in enhanced luminescence in concentric spirals of like handedness with respect to concentric spirals of opposite handedness. The results illustrate the potential for generating and coupling plasmonic vortices in chiral nanostructures for sensitive detection and manipulation of optical OAM.more » « less
-
Abstract Three-dimensional topological insulators have been demonstrated in recent years, which possess intriguing gapless, spin-polarized Dirac states with linear dispersion only on the surface. The spin polarization of the topological surface states is also locked to its momentum, which allows controlling motion of electrons using optical helicity, i.e., circularly polarized light. The electrical and thermal transport can also be significantly tuned by the helicity-control of surface state electrons. Here, we report studies of photo-thermoelectric effect of the topological surface states in Bi2Te2Se thin films with large tunability using varied gate voltages and optical helicity. The Seebeck coefficient can be altered by more than five times compared to the case without spin injection. This deep tuning is originated from the optical helicity-induced photocurrent which is shown to be enhanced, reduced, turned off, and even inverted due to the change of the accessed band structures by electrical gating. The helicity-selected topological surface state thus has a large effect on thermoelectric transport, demonstrating great opportunities for realizing helicity control of optoelectronic and thermal devices.more » « less
-
Abstract Over the past decade, orbital angular momentum has garnered considerable interest in the field of plasmonics owing to the emergence of surface-confined vortices, known as plasmonic vortices. Significant progress has been made in the generation and manipulation of plasmonic vortices, which broadly unveil the natures of plasmonic spin–orbit coupling and provide accessible means for light–matter interactions. However, traditional characterizations in the frequency domain miss some detailed information on the plasmonic vortex evolution process. Herein, an exotic spin–orbit coupling phenomenon is demonstrated. More specifically, we theoretically investigated and experimentally verified a temporally deuterogenic vortex mode, which can be observed only in the time domain and interferes destructively in the intensity field. The spatiotemporal evolution of this concomitant vortex can be tailored with different designs and incident beams. This work extends the fundamental understanding of plasmonic spin–orbit coupling and provides a unique optical force manipulation strategy, which may fuel plasmonic research and applications in the near future.more » « less
An official website of the United States government

