skip to main content


Title: Investigating the contribution of extended radio sources to the Epoch of Reionization power spectrum
ABSTRACT

We investigate the contribution of extended radio sources such as Centaurus A, and Galactic supernova remnants (SNRs) to our ability to detect the statistical 21-cm signal from the Epoch of Reionisation (EoR) with the Murchison Widefield Array (MWA). These sources are typically ignored because they are in highly attenuated parts of the MWA primary beam, however, in aggregate, these sources have apparent flux densities of $10\, \rm {Jy}$ on angular scales we expect to detect the 21-cm signal. We create bespoke multicomponent 2D Gaussian models for Galactic SNRs and for Centaurus A, and simulate the visibilities for two MWA snapshot observations. We grid those visibilities and then Fourier transform them with respect to frequency, averaging them both spherically and cylindrically to produce the 1D and 2D power spectra. We compare the simulated 1D power spectra to the expected 21-$\rm {cm}$ power spectrum. We find that although these extended sources are in highly attenuated parts of the MWA primary beam pattern, collectively they have enough power (∼104−105 $\rm {mK^2}\, {\it h^{-3}} \, \rm {Mpc^{3}}$) on EoR significant modes $(|{\boldsymbol k}| \lesssim 0.1\, h\, \rm {Mpc^{-1}})$ to prohibit detection of the 21-$\rm {cm}$ signal (∼104 $\rm {mK^2}\, {\it h^{-3}} \, \rm {Mpc^{3}}$). We find that $50{-}90{{\ \rm per\ cent}}$ of sources must be removed in order to reduce leakage to a level of $\sim 10{-}20{{\ \rm per\ cent}}$ of the 21-$\rm {cm}$ power spectrum on EoR significant modes. The effects of wide-field extended sources will have implications on the detectability of the 21-$\rm {cm}$ signal for the MWA and with the future Square Kilometre Array (SKA).

 
more » « less
NSF-PAR ID:
10413050
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
514
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 790-805
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We quantify the effect of radio frequency interference (RFI) on measurements of the 21-cm power spectrum during the Epoch of Reionization (EoR). Specifically, we investigate how the frequency structure of RFI source emission generates contamination in higher order wave modes, which is much more problematic than smooth-spectrum foreground sources. Using a relatively optimistic EoR model, we find that even a single relatively dim RFI source can overwhelm the EoR power spectrum signal of $\sim 10\, {\rm mK}^2$ for modes $0.1 \ \lt k \lt 2 \, h\, {\rm Mpc}^{-1}$. If the total apparent RFI flux density in the final power spectrum integration is kept below 1 mJy, an EoR signal resembling this optimistic model should be detectable for modes $k \lt 0.9\, h\, {\rm Mpc}^{-1}$, given no other systematic contaminants and an error tolerance as high as 10 per cent. More pessimistic models will be more restrictive. These results emphasize the need for highly effective RFI mitigation strategies for telescopes used to search for the EoR. 
    more » « less
  2. ABSTRACT The 21 cm transition from neutral hydrogen promises to be the best observational probe of the epoch of reionization (EoR). The main difficulty in measuring the 21 cm signal is the presence of bright foregrounds that require very accurate interferometric calibration. Closure quantities may circumvent the calibration requirements but may be, however, affected by direction-dependent effects, particularly antenna primary beam responses. This work investigates the impact of antenna primary beams affected by mutual coupling on the closure phase and its power spectrum. Our simulations show that primary beams affected by mutual coupling lead to a leakage of foreground power into the EoR window, which can be up to ∼104 times higher than the case where no mutual coupling is considered. This leakage is, however, essentially confined at k < 0.3 h Mpc−1 for triads that include 29 m baselines. The leakage magnitude is more pronounced when bright foregrounds appear in the antenna sidelobes, as expected. Finally, we find that triads that include mutual coupling beams different from each other have power spectra similar to triads that include the same type of mutual coupling beam, indicating that beam-to-beam variation within triads (or visibility pairs) is not the major source of foreground leakage in the EoR window. 
    more » « less
  3. null (Ed.)
    Abstract The detection of the Epoch of Reionization (EoR) delay power spectrum using a ”foreground avoidance method” highly depends on the instrument chromaticity. The systematic effects induced by the radio-telescope spread the foreground signal in the delay domain, which contaminates the EoR window theoretically observable. Applied to the Hydrogen Epoch of Reionization Array (HERA), this paper combines detailed electromagnetic and electrical simulations in order to model the chromatic effects of the instrument, and quantify its frequency and time responses. In particular, the effects of the analogue receiver, transmission cables, and mutual coupling are included. These simulations are able to accurately predict the intensity of the reflections occurring in the 150-m cable which links the antenna to the back-end. They also show that electromagnetic waves can propagate from one dish to another one through large sections of the array due to mutual coupling. The simulated system time response is attenuated by a factor 104 after a characteristic delay which depends on the size of the array and on the antenna position. Ultimately, the system response is attenuated by a factor 105 after 1400 ns because of the reflections in the cable, which corresponds to characterizable k∥-modes above 0.7 $h\,\,\rm {Mpc}^{-1}$ at 150 MHz. Thus, this new study shows that the detection of the EoR signal with HERA Phase I will be more challenging than expected. On the other hand, it improves our understanding of the telescope, which is essential to mitigate the instrument chromaticity. 
    more » « less
  4. ABSTRACT

    Radio interferometers aiming to measure the power spectrum of the redshifted 21 cm line during the Epoch of Reionization (EoR) need to achieve an unprecedented dynamic range to separate the weak signal from overwhelming foreground emissions. Calibration inaccuracies can compromise the sensitivity of these measurements to the effect that a detection of the EoR is precluded. An alternative to standard analysis techniques makes use of the closure phase, which allows one to bypass antenna-based direction-independent calibration. Similarly to standard approaches, we use a delay spectrum technique to search for the EoR signal. Using 94 nights of data observed with Phase I of the Hydrogen Epoch of Reionization Array (HERA), we place approximate constraints on the 21 cm power spectrum at z = 7.7. We find at 95 per cent confidence that the 21 cm EoR brightness temperature is ≤(372)2 ‘pseudo’ mK2 at 1.14 ‘pseudo’ h Mpc−1, where the ‘pseudo’ emphasizes that these limits are to be interpreted as approximations to the actual distance scales and brightness temperatures. Using a fiducial EoR model, we demonstrate the feasibility of detecting the EoR with the full array. Compared to standard methods, the closure phase processing is relatively simple, thereby providing an important independent check on results derived using visibility intensities, or related.

     
    more » « less
  5. Abstract The Murchison Widefield Array (MWA) is an open access telescope dedicated to studying the low-frequency (80–300 MHz) southern sky. Since beginning operations in mid-2013, the MWA has opened a new observational window in the southern hemisphere enabling many science areas. The driving science objectives of the original design were to observe 21 cm radiation from the Epoch of Reionisation (EoR), explore the radio time domain, perform Galactic and extragalactic surveys, and monitor solar, heliospheric, and ionospheric phenomena. All together $60+$ programs recorded 20 000 h producing 146 papers to date. In 2016, the telescope underwent a major upgrade resulting in alternating compact and extended configurations. Other upgrades, including digital back-ends and a rapid-response triggering system, have been developed since the original array was commissioned. In this paper, we review the major results from the prior operation of the MWA and then discuss the new science paths enabled by the improved capabilities. We group these science opportunities by the four original science themes but also include ideas for directions outside these categories. 
    more » « less